湖湘教育三新探索协作体2022-2023学年高三下学期第六次检测数学试卷含解析_第1页
湖湘教育三新探索协作体2022-2023学年高三下学期第六次检测数学试卷含解析_第2页
湖湘教育三新探索协作体2022-2023学年高三下学期第六次检测数学试卷含解析_第3页
湖湘教育三新探索协作体2022-2023学年高三下学期第六次检测数学试卷含解析_第4页
湖湘教育三新探索协作体2022-2023学年高三下学期第六次检测数学试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年高考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,,是非零向量.若,则()A. B. C. D.2.已知,,,若,则()A. B. C. D.3.若直线经过抛物线的焦点,则()A. B. C.2 D.4.已知命题p:“”是“”的充要条件;,,则()A.为真命题 B.为真命题C.为真命题 D.为假命题5.关于函数,下列说法正确的是()A.函数的定义域为B.函数一个递增区间为C.函数的图像关于直线对称D.将函数图像向左平移个单位可得函数的图像6.已知a>0,b>0,a+b=1,若α=,则的最小值是()A.3 B.4 C.5 D.67.在菱形中,,,,分别为,的中点,则()A. B. C.5 D.8.甲、乙、丙、丁四位同学利用暑假游玩某风景名胜大峡谷,四人各自去景区的百里绝壁、千丈瀑布、原始森林、远古村寨四大景点中的一个,每个景点去一人.已知:①甲不在远古村寨,也不在百里绝壁;②乙不在原始森林,也不在远古村寨;③“丙在远古村寨”是“甲在原始森林”的充分条件;④丁不在百里绝壁,也不在远古村寨.若以上语句都正确,则游玩千丈瀑布景点的同学是()A.甲 B.乙 C.丙 D.丁9.设过点的直线分别与轴的正半轴和轴的正半轴交于两点,点与点关于轴对称,为坐标原点,若,且,则点的轨迹方程是()A. B.C. D.10.中,点在边上,平分,若,,,,则()A. B. C. D.11.二项式展开式中,项的系数为()A. B. C. D.12.如图,在矩形中的曲线分别是,的一部分,,,在矩形内随机取一点,若此点取自阴影部分的概率为,取自非阴影部分的概率为,则()A. B. C. D.大小关系不能确定二、填空题:本题共4小题,每小题5分,共20分。13.若函数在区间上有且仅有一个零点,则实数的取值范围有___________.14.已知双曲线的两条渐近线方程为,若顶点到渐近线的距离为1,则双曲线方程为.15.若、满足约束条件,则的最小值为______.16.已知圆柱的上下底面的中心分别为,过直线的平面截该圆柱所得的截面是面积为36的正方形,则该圆柱的体积为____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知x,y,z均为正数.(1)若xy<1,证明:|x+z|⋅|y+z|>4xyz;(2)若=,求2xy⋅2yz⋅2xz的最小值.18.(12分)如图所示,在四棱锥中,底面是边长为2的正方形,侧面为正三角形,且面面,分别为棱的中点.(1)求证:平面;(2)(文科)求三棱锥的体积;(理科)求二面角的正切值.19.(12分)如图,点为圆:上一动点,过点分别作轴,轴的垂线,垂足分别为,,连接延长至点,使得,点的轨迹记为曲线.(1)求曲线的方程;(2)若点,分别位于轴与轴的正半轴上,直线与曲线相交于,两点,且,试问在曲线上是否存在点,使得四边形为平行四边形,若存在,求出直线方程;若不存在,说明理由.20.(12分)已知函数,且.(1)若,求的最小值,并求此时的值;(2)若,求证:.21.(12分)设函数.(1)若,求函数的值域;(2)设为的三个内角,若,求的值;22.(10分)已知,均为给定的大于1的自然数,设集合,.(Ⅰ)当,时,用列举法表示集合;(Ⅱ)当时,,且集合满足下列条件:①对任意,;②.证明:(ⅰ)若,则(集合为集合在集合中的补集);(ⅱ)为一个定值(不必求出此定值);(Ⅲ)设,,,其中,,若,则.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】试题分析:由题意得:若,则;若,则由可知,,故也成立,故选D.考点:平面向量数量积.【思路点睛】几何图形中向量的数量积问题是近几年高考的又一热点,作为一类既能考查向量的线性运算、坐标运算、数量积及平面几何知识,又能考查学生的数形结合能力及转化与化归能力的问题,实有其合理之处.解决此类问题的常用方法是:①利用已知条件,结合平面几何知识及向量数量积的基本概念直接求解(较易);②将条件通过向量的线性运算进行转化,再利用①求解(较难);③建系,借助向量的坐标运算,此法对解含垂直关系的问题往往有很好效果.2、B【解析】

由平行求出参数,再由数量积的坐标运算计算.【详解】由,得,则,,,所以.故选:B.【点睛】本题考查向量平行的坐标表示,考查数量积的坐标运算,掌握向量数量积的坐标运算是解题关键.3、B【解析】

计算抛物线的交点为,代入计算得到答案.【详解】可化为,焦点坐标为,故.故选:.【点睛】本题考查了抛物线的焦点,属于简单题.4、B【解析】

由的单调性,可判断p是真命题;分类讨论打开绝对值,可得q是假命题,依次分析即得解【详解】由函数是R上的增函数,知命题p是真命题.对于命题q,当,即时,;当,即时,,由,得,无解,因此命题q是假命题.所以为假命题,A错误;为真命题,B正确;为假命题,C错误;为真命题,D错误.故选:B【点睛】本题考查了命题的逻辑连接词,考查了学生逻辑推理,分类讨论,数学运算的能力,属于中档题.5、B【解析】

化简到,根据定义域排除,计算单调性知正确,得到答案.【详解】,故函数的定义域为,故错误;当时,,函数单调递增,故正确;当,关于的对称的直线为不在定义域内,故错误.平移得到的函数定义域为,故不可能为,错误.故选:.【点睛】本题考查了三角恒等变换,三角函数单调性,定义域,对称,三角函数平移,意在考查学生的综合应用能力.6、C【解析】

根据题意,将a、b代入,利用基本不等式求出最小值即可.【详解】∵a>0,b>0,a+b=1,∴,当且仅当时取“=”号.

答案:C【点睛】本题考查基本不等式的应用,“1”的应用,利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是首先要判断参数是否为正;二定是其次要看和或积是否为定值(和定积最大,积定和最小);三相等是最后一定要验证等号能否成立,属于基础题.7、B【解析】

据题意以菱形对角线交点为坐标原点建立平面直角坐标系,用坐标表示出,再根据坐标形式下向量的数量积运算计算出结果.【详解】设与交于点,以为原点,的方向为轴,的方向为轴,建立直角坐标系,则,,,,,所以.故选:B.【点睛】本题考查建立平面直角坐标系解决向量的数量积问题,难度一般.长方形、正方形、菱形中的向量数量积问题,如果直接计算较麻烦可考虑用建系的方法求解.8、D【解析】

根据演绎推理进行判断.【详解】由①②④可知甲乙丁都不在远古村寨,必有丙同学去了远古村寨,由③可知必有甲去了原始森林,由④可知丁去了千丈瀑布,因此游玩千丈瀑布景点的同学是丁.故选:D.【点睛】本题考查演绎推理,掌握演绎推理的定义是解题基础.9、A【解析】

设坐标,根据向量坐标运算表示出,从而可利用表示出;由坐标运算表示出,代入整理可得所求的轨迹方程.【详解】设,,其中,,即关于轴对称故选:【点睛】本题考查动点轨迹方程的求解,涉及到平面向量的坐标运算、数量积运算;关键是利用动点坐标表示出变量,根据平面向量数量积的坐标运算可整理得轨迹方程.10、B【解析】

由平分,根据三角形内角平分线定理可得,再根据平面向量的加减法运算即得答案.【详解】平分,根据三角形内角平分线定理可得,又,,,,..故选:.【点睛】本题主要考查平面向量的线性运算,属于基础题.11、D【解析】

写出二项式的通项公式,再分析的系数求解即可.【详解】二项式展开式的通项为,令,得,故项的系数为.故选:D【点睛】本题主要考查了二项式定理的运算,属于基础题.12、B【解析】

先用定积分求得阴影部分一半的面积,再根据几何概型概率公式可求得.【详解】根据题意,阴影部分的面积的一半为:,于是此点取自阴影部分的概率为.又,故.故选B.【点睛】本题考查了几何概型,定积分的计算以及几何意义,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、或【解析】

函数的零点方程的根,求出方程的两根为,,从而可得或,即或.【详解】函数在区间的零点方程在区间的根,所以,解得:,,因为函数在区间上有且仅有一个零点,所以或,即或.【点睛】本题考查函数的零点与方程根的关系,在求含绝对值方程时,要注意对绝对值内数的正负进行讨论.14、【解析】由已知,即,取双曲线顶点及渐近线,则顶点到该渐近线的距离为,由题可知,所以,则所求双曲线方程为.15、【解析】

作出不等式组所表示的可行域,利用平移直线的方法找出使得目标函数取得最小时对应的最优解,代入目标函数计算即可.【详解】作出不等式组所表示的可行域如下图所示:联立,解得,即点,平移直线,当直线经过可行域的顶点时,该直线在轴上的截距最小,此时取最小值,即.故答案为:.【点睛】本题考查简单的线性规划问题,考查线性目标函数的最值问题,考查数形结合思想的应用,属于基础题.16、【解析】

由轴截面是正方形,易求底面半径和高,则圆柱的体积易求.【详解】解:因为轴截面是正方形,且面积是36,所以圆柱的底面直径和高都是6故答案为:【点睛】考查圆柱的轴截面和其体积的求法,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)最小值为1【解析】

(1)利用基本不等式可得,再根据0<xy<1时,即可证明|x+z|⋅|y+z|>4xyz.(2)由=,得,然后利用基本不等式即可得到xy+yz+xz≥3,从而求出2xy⋅2yz⋅2xz的最小值.【详解】(1)证明:∵x,y,z均为正数,∴|x+z|⋅|y+z|=(x+z)(y+z)≥=,当且仅当x=y=z时取等号.又∵0<xy<1,∴,∴|x+z|⋅|y+z|>4xyz;(2)∵=,即.∵,,,当且仅当x=y=z=1时取等号,∴,∴xy+yz+xz≥3,∴2xy⋅2yz⋅2xz=2xy+yz+xz≥1,∴2xy⋅2yz⋅2xz的最小值为1.【点睛】本题考查了利用综合法证明不等式和利用基本不等式求最值,考查了转化思想和运算能力,属中档题.18、(1)见解析(2)(文)(理)【解析】

(1)证明:取PD中点G,连结GF、AG,∵GF为△PDC的中位线,∴GF∥CD且,又AE∥CD且,∴GF∥AE且GF=AE,∴EFGA是平行四边形,则EF∥AG,又EF不在平面PAD内,AG在平面PAD内,∴EF∥面PAD;(2)(文)解:取AD中点O,连结PO,∵面PAD⊥面ABCD,△PAD为正三角形,∴PO⊥面ABCD,且,又PC为面ABCD斜线,F为PC中点,∴F到面ABCD距离,故;(理)连OB交CE于M,可得Rt△EBC≌Rt△OAB,∴∠MEB=∠AOB,则∠MEB+∠MBE=90°,即OM⊥EC.连PM,又由(2)知PO⊥EC,可得EC⊥平面POM,则PM⊥EC,即∠PMO是二面角P-EC-D的平面角,在Rt△EBC中,,∴,∴,即二面角P-EC-D的正切值为.【方法点晴】本题主要考查线面平行的判定定理、二面角的求法、利用等积变换求三棱锥体积,属于难题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.本题(1)是就是利用方法①证明的.19、(1)(2)不存在;详见解析【解析】

(1)设,,,通过,即为的中点,转化求解,点的轨迹的方程.(2)设直线的方程为,先根据,可得,①,再根据韦达定理,点在椭圆上可得,②,将①代入②可得,该方程无解,问题得以解决【详解】(1)设,,则,,由题意知,所以为中点,由中点坐标公式得,即,又点在圆:上,故满足,得.曲线的方程.(2)由题意知直线的斜率存在且不为零,设直线的方程为,因为,故,即①,联立,消去得:,设,,,,,因为四边形为平行四边形,故,点在椭圆上,故,整理得②,将①代入②,得,该方程无解,故这样的直线不存在.【点睛】本题考查点的轨迹方程的求法、满足条件的点是否存在的判断与直线方程的求法,考查数学转化思想方法,是中档题.20、(1)最小值为,此时;(2)见解析【解析】

(1)由已知得,法一:,,根据二次函数的最值可求得;法二:运用基本不等式构造,可得最值;法三:运用柯西不等式得:,可得最值;(2)由绝对值不等式得,,又,可得证.【详解】(1),法一:,,的最小值为,此时;法二:,,即的最小值为,此时;法三:由柯西不等式得:,,即的最小值为,此时;(2),,又,.【点睛】本题考查运用基本不等式,柯西不等式,绝对值不等式进行不等式的证明和求解函数的最值,属于中档题.21、(1)(2)【解析】

(1)将,利用三角恒等变换转化为:,,再根据正弦函数的性质求解,(2)根据,得,又为的内角,得到,再根据,利用两角和与差的余弦公式求解,【详解】(1),,,,即的值域为;(2)由,得,又为的内角,所以,又因为在中,,所以,所以.【点睛】本题主要考查三角恒等变换和三角函数的性质,还考查了运算求解的能力,属于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论