版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
...wd......wd......wd...2017年江苏省高考数学模拟应用题大全〔一〕1、(江苏省如皋市2017届高三下学期语数英联考)如图,矩形公园中:,公园的左下角阴影局部为以为圆心,半径为的圆面的人工湖。现方案修建一条与圆相切的观光道路〔点、分别在边与上〕,为切点。〔1〕试求观光道路长度的最大值;〔2〕公园方案在道路右侧种植草坪,试求草坪面积的最大值。2.(江苏省张家港市崇真中学2017届高三上学期寒假自主学习检测)梯形ABCD顶点B、C在以AD为直径的圆上,AD=2米,(1)如图1,假设电热丝由AB,BC,CD这三局部组成,在AB,CD上每米可辐射1单位热量,在BC上每米可辐射2单位热量,请设计BC的长度,使得电热丝辐射的总热量最大,并求总热量的最大值;图2图1第2题图(2)如图2,假设电热丝由弧eq\o(AB,\s\up6(⌒)),eq\o(CD,\s\up6(⌒))和弦BC这三局部组成,在弧eq\o(AB,\s\up6(⌒)),eq\o(CD,\s\up6(⌒))上每米可辐射1单位热量,在弦BC上每米可辐射2单位热量,请设计BC的长度,使得电热丝辐射的总热量最大.图2图1第2题图3、〔江苏省淮阴中学、南师附中、海门中学、天一中学2017届高三下学期期初考试〕如图,在某商业区周边有两条公路,在点处交汇,该商业区为圆心角,半径的扇形.现规划在该商业区外修建一条公路,与分布交于,要求与扇形弧相切,切点不在上..〔1〕设,试用表示新建公路的长度,求出满足的关系式,并写出的范围;〔2〕设,试用表示新建公路的长度,并且确定的位置,使得新建公路的长度最短.4、〔江苏省联盟大联考2017届高三2月联考数学试题〕某校园内有一块三角形绿地〔如图1〕,其中,绿地内种植有一呈扇形的花卉景观,扇形的两边分别落在和上,圆弧与相切于点.〔1〕求扇形花卉景观的面积;〔2〕学校方案2017年年整治校园环境,为美观起见,设计在原有绿地根基上扩建成平行四边形〔如图2〕,其中,并种植两块面积一样的扇形花卉景观,两扇形的边都分别落在平行四边形的边上,圆弧都与相切,假设扇形的半径为,求平行四边形绿地占地面积的最小值.5、〔江苏省如皋市2016-2017学年度高三第二学期期初高三数学试卷〕如以下列图,某工厂要设计一个三角形原料,其中〔1〕假设,求的面积的最大值;〔2〕假设的面积为1,问为何值时取得最小值.6、〔江苏省中华中学、溧水高级中学、省句中、省扬中、镇江一中、省镇中2017届高三下学期六校联考试卷〕某工厂要生产体积为定值V的漏斗,现选择半径为R的圆形马口铁皮,截取如以下列图的扇形,焊制成漏斗.〔1〕假设漏斗的半径为EQ\F(EQ\r(3),2)R,求圆形铁皮的半径R;〔2〕这张圆形铁皮的半径R至少是多少7、〔江苏盐城中学2017年高三开学检测〕悦达集团开发一种新产品,为便于运输,现欲在大丰寻找一个工厂代理加工生产该新产品,为保护核心技术,核心配件只能从集团购置且由集团统一配送,该厂每天需要此核心为200个,配件的价格为1.8元/个,每次购置需支付运费238元。每次购置来的配件还需支付保密费,标准如下:7天以内〔含7天〕,均按10元/天支付;7天以外,根据当天还未生产的剩余配件的数量,以每天0.03元/个支付。〔1〕当10天购置一次配件时,求该厂用于配件的保密费〔元〕值;〔2〕设该厂天购置一次配件,求该厂在这天中用于配件的总费用〔元〕关于的函数关系式,并求该厂多少天购置一次配件才能使平均每天支付的费用最少8、〔江苏省常州市2017届高三上学期期末考试数学试题〕某辆汽车以千米/小时的速度在高速公路上匀速行驶〔考虑到高速公路行车安全要求〕时,每小时的油耗〔所需要的汽油量〕为升,其中为常数,且.〔1〕假设汽车以千米/小时的速度行驶时,每小时的油耗为升,欲使每小时的油耗不超过9升,求的取值范围;〔2〕求该汽车行驶千米的油耗的最小值.9、〔江苏省南京市、盐城市2017届高三年级第一次模拟考试数学试卷〕如以下列图,某街道居委会拟在地段的居民楼正南方向的空白地段上建一个活动中心,其中米.活动中心东西走向,与居民楼平行.从东向西看活动中心的截面图的下局部是长方形,上局部是以为直径的半圆.为了保证居民楼住户的采光要求,活动中心在与半圆相切的太阳光线照射下落在居民楼上的影长不超过米,其中该太阳光线与水平线的夹角满足.〔1〕假设设计米,米,问能否保证上述采光要求F第18题图ABEDGC←南居民楼活动中心〔2〕在保证上述F第18题图ABEDGC←南居民楼活动中心10、〔江苏省苏北四市〔淮安、宿迁、连云港、徐州〕2017届高三上学期期中考试数学试题〕某城市有一直角梯形绿地,其中,km,km.现过边界上的点处铺设一条直的灌溉水管,将绿地分成面积相等的两局部.〔1〕如图=1\*GB3①,假设为的中点,在边界上,求灌溉水管的长度;ABCD〔第10题图=2\*GB3②〕EFABCD〔第10题图=1\*GB3ABCD〔第10题图=2\*GB3②〕EFABCD〔第10题图=1\*GB3①〕EF11、〔江苏省苏州市2017届高三调研测试数学试题〕某湿地公园内有一条河,现打算建一座桥〔图1〕将河两岸的路连接起来,剖面设计图纸〔图2〕如下:其中,点为轴上关于原点对称的两点,曲线是桥的主体,为桥顶,且曲线段在图纸上的图形对应函数的解析式为,曲线段均为开口向上的抛物线段,且分别为两抛物线的顶点.设计时要求:保持两曲线在各衔接处的切线的斜率相等.〔1〕求曲线段在图纸上对应函数的解析式,并写出定义域;〔2〕车辆从经到爬坡.定义车辆上桥过程中某点所需要的爬坡能力为:〔该点与桥顶间的水平距离〕〔设计图纸上该点处的切线的斜率〕,其中的单位:米.假设该景区可提供三种类型的观光车:①游客踏乘;②蓄电池动力;③内燃机动力,它们的爬坡能力分别为米,米,米,又图纸上一个单位长度表示实际长度米,试问三种类型的观光车是否都可以顺利过桥12、〔江苏省盐城市2017届高三上学期期中考试数学试题〕如以下列图,有一块矩形空地,km,=km,根据周边环境及地形实际,当地政府规划在该空地内建一个筝形商业区,筝形的顶点为商业区的四个入口,其中入口在边上〔不包含顶点〕,入口分别在边上,且满足点恰好关于直线对称,矩形内筝形外的区域均为绿化区.〔1〕请确定入口的选址范围;〔2〕设商业区的面积为,绿化区的面积为,商业区的环境舒适度指数为,那么入口如何选址可使得该商业区的环境舒适度指数最大13、〔江苏省扬州市2017届高三上学期期中测试数学试题〕如图,某市在海岛A上建了一水产养殖中心。在海岸线上有相距70公里的B、C两个小镇,并且AB=30公里,AC=80公里,B镇在养殖中心工作的员工有3百人,C镇在养殖中心工作的员工有5百人。现欲在BC之间建一个码头D,运送来自两镇的员工到养殖中心工作,又知水路运输与陆路运输每百人每公里运输成本之比为1∶2.ABDCABDC〔2〕设,试确定的大小,使得运输总成本最少。14、〔江苏省镇江市2017届高三上学期期末〔一模〕考试数学试题〕如图,某公园有三条观光大道围成直角三角形,其中直角边,斜边.现有甲、乙、丙三位小朋友分别在大道上嬉戏,所在位置分别记为点.〔1〕假设甲乙都以每分钟的速度从点出发在各自的大道上奔波,到大道的另一端时即停,乙比甲迟分钟出发,当乙出发分钟后,求此时甲乙两人之间的距离;〔2〕设,乙丙之间的距离是甲乙之间距离的倍,且,请将甲乙之间的距离表示为的函数,并求甲乙之间的最小距离.15、〔2017年南通、泰州一模〕如图,某机械厂要将长6m,宽2m的长方形铁皮ABCD进展裁剪.点F为AD的中点,点E在边BC上,裁剪时先将四边形CDFE沿直线EF翻折到MNFE处〔点C,D分别落在直线BC下方点M,N处,FN交边BC于点P〕,再沿直线PE〔1〕当∠EFP=时,试判断四边形MNPE的形状,并求其面积;〔2〕假设使裁剪得到的四边形MNPE面积最大,请给出裁剪方案,并说明理由.16、〔2017年扬州一模〕如图,矩形ABCD是一个历史文物展览厅的俯视图,点E在AB上,在梯形BCDE区域内部展示文物,DE是玻璃幕墙,游客只能在ADE区域内参观.在AE上点P处安装一可旋转的监控摄像头,为监控角,其中M、N在线段DE〔含端点〕上,且点M在点N的右下方.经测量得知:AD=6米,AE=6米,AP=2米,.记〔弧度〕,监控摄像头的可视区域PMN的面积为S平方米.〔1〕求S关于的函数关系式,并写出的取值范围;〔参考数据:〕〔2〕求的最小值.答案1.解法一:(1)设∠DOE=𝜃,因为点E、F分别在边OA与BC上,所以,那么∠DOF=,...........................................2分在Rt△DOE中,DE=tan𝜃,在Rt△DOF中,DF=tan,......................4分EF=DE+DF=tan𝜃+, ...........................................5分∵,∴当时,[cos𝜃]min=,EFmax=2............................................7分(2)在Rt△DOE中,OE=,由〔1〕可得...........................................9分S=S矩形OABC−S梯形OEFC=2−(),.........................................11分,令,解得,𝜃S’+0−S↗极大值↘.........................................13分因为S在时有且仅有一个极大值,因此这个极大值也即S的最大值.∴当时,Smax=...................................................................................................14分答:〔1〕观光道路EF长度的最大值为2km;〔2〕草坪面积S的最大值为km........................................15分解法二:以O为做标原点,OA、OC分别为x,y轴建设直角坐标系.O设D(x0,y0),那么x02+y02=1(),O那么直线EF:x0x+y0y=1,∴E(,0),F(,1),(1)EF=(),∴当时,EFmax=2,(2)S=S矩形OABC−S梯形OEFC=2−()由x02+y02=1,设x0=cos𝜃,y0=sin𝜃(),下同法一.2.解:(1)设∠AOB=θ,θ∈(0,eq\f(π,2))那么AB=2sineq\f(θ,2),BC=2cosθ,总热量单位f(θ)=4cosθ+4sineq\f(θ,2)=-8(sineq\f(θ,2))2+4sineq\f(θ,2)+4,当sineq\f(θ,2)=eq\f(1,4),此时BC=2cosθ=eq\f(7,4)(米),总热量最大eq\f(9,2)(单位).答:应设计BC长为eq\f(7,4)米,电热丝辐射的总热量最大,最大值为eq\f(9,2)单位.(2)总热量单位g(θ)=2θ+4cosθ,θ∈(0,eq\f(π,2))令g'(θ)=0,即2-4sinθ=0,θ=eq\f(π,6),增区间〔0,eq\f(π,6)〕,减区间〔eq\f(π,6),eq\f(π,2)〕当θ=eq\f(π,6),g(θ)最大,此时BC=2cosθ=eq\r(3)(米)答:应设计BC长为eq\r(3)米,电热丝辐射的总热量最大.3、4、5、解:〔1〕以BC所在直线为x轴,BC的中垂线为y轴建设直角坐标系,那么B(-1,0),C(1,0)设A(x,y),由得,化简得.所以A点的轨迹为以〔2,0〕为圆心,为半径的圆.所以.………………6分〔2〕设AB=c,BC=a,AC=b,由得.………10分令令得…………12分在上单调递减,在上单调递增.当有最小值,即BC最小.……14分6、解:(1)漏斗高h=EQ\r(R2-(EQ\F(EQ\r(3),2)R)2)=EQ\F(1,2)R,……2分那么体积V=EQ\F(1,3)π(EQ\F(EQ\r(3),2)R)2h,所以R=2EQ\r(3,EQ\F(V,π)).……6分(2)设漏斗底面半径为r(r>0),V=EQ\F(1,3)πr2EQ\r(R2-r2),R=EQ\r(EQ\F(9V2,π2r4)+r2),……9分令f(r)=EQ\F(9V2,π2r4)+r2(r>0),那么f′(r)=-EQ\F(36V2,π2r5)+2r=EQ\F(2π2r6-36V2,π2r5)所以f(r)在(0,EQ\r(6,EQ\F(18V2,π2)))上单调减,(EQ\r(6,EQ\F(18V2,π2)),+∞)单调增,……12分所以当r=EQ\r(6,EQ\F(18V2,π2))时,R取最小值为EQ\r(3,EQ\F(9EQ\r(3)V,2π)).……15分答:这张圆形铁皮的半径R至少为EQ\r(3,EQ\F(9EQ\r(3)V,2π)).……16分7、〔1〕=〔元〕〔2〕当0<≤7时当8≤时+设平均每天支付的费用元/天==当0<≤7时∵在(]为减函数∴=元当8≤时当时,<0,是减函数;当时,>0,是增函数。<∴当时,最小8、解:〔1〕由题意可得当x=120时,==11.5,解得k=100,由〔x﹣100+〕≤9,即x2﹣145x+4500≤0,解得45≤x≤100,又60≤x≤120,可得60≤x≤100,每小时的油耗不超过9升,x的取值范围为[60,100];〔2〕设该汽车行驶100千米油耗为y升,那么y=•=20﹣+〔60≤x≤120〕,令t=,那么t∈[,],即有y=90000t2﹣20kt+20=90000〔t﹣〕2+20﹣,对称轴为t=,由60≤k≤100,可得∈[,],①假设≥即75≤k<100,那么当t=,即x=时,ymin=20﹣;②假设<即60≤k<75,那么当t=,即x=120时,ymin=﹣.答:当75≤k<100,该汽车行驶100千米的油耗的最小值为20﹣升;当60≤k<75,该汽车行驶100千米的油耗的最小值为﹣升.ABEDHGC第18题←南·xy9.解:如以下列图,以点A为ABEDHGC第18题←南·xy〔1〕因为,,所以半圆的圆心为,半径.设太阳光线所在直线方程为,即,...............2分那么由,解得或〔舍〕.故太阳光线所在直线方程为,...............5分令,得米米.所以此时能保证上述采光要求................7分〔2〕设米,米,那么半圆的圆心为,半径为.方法一:设太阳光线所在直线方程为,即,由,解得或〔舍〕................9分故太阳光线所在直线方程为,令,得,由,得................11分所以.当且仅当时取等号.所以当米且米时,可使得活动中心的截面面积最大................16分方法二:欲使活动中心内部空间尽可能大,那么影长EG恰为米,那么此时点为,设过点G的上述太阳光线为,那么所在直线方程为y-eq\f(5,2)=-eq\f(3,4)(x-30),即................10分由直线与半圆H相切,得.而点H(r,h)在直线的下方,那么3r+4h-100<0,即,从而...............13分又.当且仅当时取等号.所以当米且米时,可使得活动中心的截面面积最大................16分10、〔1〕因为,,,所以,……2分取中点,那么四边形的面积为,即,解得,…………6分ABCD〔第18题ABCD〔第18题图=2\*GB3②〕EF故灌溉水管的长度为km.……8分〔2〕设,,在中,,所以在中,,所以,所以的面积为,又,所以,即.……12分在中,由余弦定理,得,当且仅当时,取“〞.故灌溉水管的最短长度为km.……16分11、解:〔1〕由题意A为抛物线的顶点,设A〔a,0〕〔a<﹣2〕,那么可设方程为y=λ〔x﹣a〕2〔a≤x≤﹣2,λ>0〕,y′=2λ〔x﹣a〕.曲线段BCD在图纸上的图形对应函数的解析式为y=〔x∈[﹣2,2]〕,y′=,且B〔﹣2,1〕,那么曲线在B处的切线斜率为,∴,∴a=﹣6,λ=,∴曲线段AB在图纸上对应函数的解析式为y=〔﹣6≤x≤﹣2〕;〔2〕设P为曲线段AC上任意一点.①P在曲线段AB上,那么通过该点所需要的爬坡能力〔MP〕1==,在[﹣6,﹣3]上为增函数,[﹣3,﹣2]上是减函数,最大为米;②P在曲线段BC上,那么通过该点所需要的爬坡能力〔MP〕2==〔x∈[﹣2,0]〕,设t=x2,t∈[0,4],〔MP〕2=y=.t=0,y=0;0<t≤4,y=≤1〔t=4取等号〕,此时最大为1米.由上可得,最大爬坡能力为米;∵0.8<<1.5<2,∴游客踏乘不能顺利通过该桥;蓄电池动力和内燃机动力能顺利通过该桥.12、解:〔1〕以A为原点,AB所在直线为轴,建设如以下列图平面直角坐标系,那么,设〔〕,那么AF的中点为,斜率为,而,故的斜率为,那么的方程为,令,得;……………2分令,得;……………4分由,得,,即入口的选址需满足的长度范围是〔单位:km〕.……………6分〔2〕因为,故该商业区的环境舒适度指数,……………9分所以要使最大,只需最小.设……………10分那么,令,得或〔舍〕,……………12分的情况如下表:10减极小增故当,即入口满足km时,该商业区的环境舒适度指数最大.……16分13、解:〔1〕在中,…3分所以………5分〔2〕在中,由得:所以,………9分设水路运输的每百人每公里的费用为元,陆路运输的每百人每公里的费用为元,那么运输总费用……11分令,那么,设,解得:当时,单调减;当时,单调增时,取最小值,同时也取得最小值.……14分此时,满足,所以点落在之间所以时,运输总成本最小.答:时,运输总成本最小.………16分14.解:〔1〕依题意得,,在△中,,∴,……2分在△中,由余弦定理得:,∴.……6分答:甲乙两人之间的距离为m.……7分〔2〕由题意得,,在直角三角形中,,……9分在△中,由正弦定理得,即,∴,,……12分所以当时,有最小值.……13分答:甲乙之间的最小距离为.……14分15
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度加工合同:服装定制加工厂长期合作协议
- 2024年度医疗器械采购与临床试验合同
- 2024年度科技公司专利实施许可合同
- 2024年度租赁合同:某酒店设备租赁事宜
- 护理继续教育讲课
- 2024保险公司提供的海洋货物运输保险合同
- 2024年度网络安全的系统维护合同2篇
- 呼吸机使用培训
- 如何做口腔消毒培训班
- 2024年度企业信息咨询服务框架合同
- GB/T 41715-2022定向刨花板
- YC/T 384.3-2018烟草企业安全生产标准化规范第3部分:考核评价准则和方法
- GB/T 7324-2010通用锂基润滑脂
- GB/T 4459.1-1995机械制图螺纹及螺纹紧固件表示法
- GB/T 29163-2012煤矸石利用技术导则
- mom-knows-best-诗歌教学讲解课件
- 《药品管理法》考试参考题库200题(含答案)
- 最新山羊、绵羊人工授精技术及新技术介绍(含人工授精视频)课件
- 小儿暴发性心肌炎的诊断与治疗课件
- 2022年征信知识竞赛基础题题库(含各题型)
- 八年级语文上册第23课《孟子》三章原文及注释
评论
0/150
提交评论