信号和线性系统分析-(第四版)习题解答_第1页
信号和线性系统分析-(第四版)习题解答_第2页
信号和线性系统分析-(第四版)习题解答_第3页
信号和线性系统分析-(第四版)习题解答_第4页
信号和线性系统分析-(第四版)习题解答_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

...wd......wd......wd...1-1画出以下各信号的波形【式中】为斜升函数。〔2〕〔3〕〔4〕〔5〕〔7〕〔10〕解:各信号波形为〔2〕〔3〕〔4〕〔5〕〔7〕〔10〕1-2画出以下各信号的波形[式中为斜升函数]。〔1〕〔2〕〔5〕〔8〕〔11〕〔12〕解:各信号波形为〔1〕〔2〕〔5〕〔8〕〔11〕〔12〕1-3写出图1-3所示各波形的表达式。1-4写出图1-4所示各序列的闭合形式表达式。1-5判别以下各序列是否为周期性的。如果是,确定其周期。〔2〕〔5〕解:1-6信号的波形如图1-5所示,画出以下各函数的波形。〔1〕〔2〕〔5〕〔6〕〔7〕〔8〕解:各信号波形为〔1〕〔2〕〔5〕〔6〕〔7〕〔8〕1-7序列的图形如图1-7所示,画出以下各序列的图形。〔1〕〔2〕〔3〕〔4〕〔5〕〔6〕解:1-9信号的波形如图1-11所示,分别画出和的波形。解:由图1-11知,的波形如图1-12(a)所示〔波形是由对的波形展宽为原来的两倍而得〕。将的波形反转而得到的波形,如图1-12(b)所示。再将的波形右移3个单位,就得到了,如图1-12(c)所示。的波形如图1-12(d)所示。1-10计算以下各题。〔1〕〔2〕〔5〕〔8〕1-12如图1-13所示的电路,写出〔1〕以为响应的微分方程。〔2〕以为响应的微分方程。1-20写出图1-18各系统的微分或差分方程。1-23设系统的初始状态为,鼓励为,各系统的全响应与鼓励和初始状态的关系如下,试分析各系统是否是线性的。〔1〕〔2〕〔3〕〔4〕〔5〕1-25设鼓励为,以下是各系统的零状态响应。判断各系统是否是线性的、时不变的、因果的、稳定的〔1〕〔2〕〔3〕〔4〕〔5〕〔6〕〔7〕〔8〕1-28某一阶LTI离散系统,其初始状态为。当鼓励为时,其全响应为假设初始状态不变,当鼓励为时,其全响应为假设初始状态为,当鼓励为时,求其全响应。第二章2-1描述系统的微分方程和初始状态如下,试求其零输入响应。〔1〕〔4〕2-2描述系统的微分方程和初始状态如下,试求其值和。〔2〕〔4〕解:2-4描述系统的微分方程和初始状态如下,试求其零输入响应、零状态响应和全响应。〔2〕解:2-8如图2-4所示的电路,假设以为输入,为输出,试列出其微分方程,并求出冲激响应和阶跃响应。2-12如图2-6所示的电路,以电容电压为响应,试求其冲激响应和阶跃响应。2-16各函数波形如图2-8所示,图2-8(b)、(c)、(d)均为单位冲激函数,试求以下卷积,并画出波形图。〔1〕〔2〕〔3〕〔4〕〔5〕波形图如图2-9(a)所示。波形图如图2-9(b)所示。波形图如图2-9(c)所示。波形图如图2-9(d)所示。波形图如图2-9(e)所示。2-20,,求2-22某LTI系统,其输入与输出的关系为求该系统的冲激响应。2-28如图2-19所示的系统,试求输入时,系统的零状态响应。2-29如图2-20所示的系统,它由几个子系统组合而成,各子系统的冲激响应分别为求复合系统的冲激响应。第三章习题3.1、试求序列的差分、和。3.6、求以下差分方程所描述的LTI离散系统的零输入相应、零状态响应和全响应。1〕3〕5〕3.8、求以下差分方程所描述的离散系统的单位序列响应。2〕5〕3.9、求图所示各系统的单位序列响应。〔a〕〔c〕3.10、求图所示系统的单位序列响应。3.11、各序列的图形如以下列图,求以下卷积和。〔1〕〔2〕〔3〕〔4〕3.13、求题3.9图所示各系统的阶跃响应。3.14、求图所示系统的单位序列响应和阶跃响应。3.15、假设LTI离散系统的阶跃响应,求其单位序列响应。3.16、如以下列图系统,试求当鼓励分别为〔1〕〔2〕时的零状态响应。3.18、如以下列图的离散系统由两个子系统级联组成,,,鼓励,求该系统的零状态响应。〔提示:利用卷积和的结合律和交换律,可以简化运算。〕3.22、如以下列图的复合系统有三个子系统组成,它们的单位序列响应分别为,,求复合系统的单位序列响应。第四章习题4.6求以下周期信号的基波角频率Ω和周期T。〔1〕〔2〕〔3〕〔4〕〔5〕〔6〕4.7用直接计算傅里叶系数的方法,求图4-15所示周期函数的傅里叶系数〔三角形式或指数形式〕。图4-154.10利用奇偶性判断图4-18示各周期信号的傅里叶系数中所含有的频率分量。图4-184-11某1Ω电阻两端的电压如图4-19所示,〔1〕求的三角形式傅里叶系数。〔2〕利用〔1〕的结果和,求以下无穷级数之和〔3〕求1Ω电阻上的平均功率和电压有效值。〔4〕利用〔3〕的结果求以下无穷级数之和图4-194.17根据傅里叶变换对称性求以下函数的傅里叶变换〔1〕〔2〕〔3〕4.18求以下信号的傅里叶变换〔1〕〔2〕〔3〕〔4〕〔5〕4.19试用时域微积分性质,求图4-23示信号的频谱。图4-234.20假设,试求以下函数的频谱:〔1〕〔3〕〔5〕〔8〕〔9〕4.21求以下函数的傅里叶变换〔1〕〔3〕〔5〕4.23试用以下方式求图4-25示信号的频谱函数〔1〕利用延时和线性性质〔门函数的频谱可利用结果〕。〔2〕利用时域的积分定理。〔3〕将看作门函数与冲激函数、的卷积之和。图4-254.25试求图4-27示周期信号的频谱函数。图〔b〕中冲激函数的强度均为1。图4-274.27如图4-29所示信号的频谱为,求以下各值[不必求出]〔1〕〔2〕〔3〕图4-294.28利用能量等式计算以下积分的值。〔1〕〔2〕4.29一周期为T的周期信号,其指数形式的傅里叶系数为,求以下周期信号的傅里叶系数〔1〕〔2〕〔3〕〔4〕4.31求图4-30示电路中,输出电压电路中,输出电压对输入电流的频率响应,为了能无失真的传输,试确定R1、R2的值。图4-304.33某LTI系统,其输入为,输出为式中a为常数,且,求该系统的频率响应。4.34某LTI系统的频率响应,假设系统输入,求该系统的输出。4.35一理想低通滤波器的频率响应4.36一个LTI系统的频率响应假设输入,求该系统的输出。4.39如图4-35的系统,其输出是输入的平方,即〔设为实函数〕。该系统是线性的吗〔1〕如,求的频谱函数〔或画出频谱图〕。〔2〕如,求的频谱函数〔或画出频谱图〕。4.45如图4-42(a)的系统,带通滤波器的频率响应如图(b)所示,其相频特性,假设输入求输出信号。图4-424.48有限频带信号的最高频率为100Hz,假设对以下信号进展时域取样,求最小取样频率。〔1〕〔2〕〔3〕〔4〕4.50有限频带信号,其中,求的冲激函数序列进展取样〔请注意〕。〔1〕画出及取样信号在频率区间〔-2kHz,2kHz〕的频谱图。〔2〕假设将取样信号输入到截止频率,幅度为的理想低通滤波器,即其频率响应画出滤波器的输出信号的频谱,并求出输出信号。图4-47图4-48图4-494.53求以下离散周期信号的傅里叶系数。〔2〕第五章5-2求图5-1所示各信号拉普拉斯变换,并注明收敛域。5-3利用常用函数〔例如,,,等〕的象函数及拉普拉斯变换的性质,求以下函数的拉普拉斯变换。〔1〕〔3〕〔5〕〔7〕〔9〕〔11〕〔13〕〔15〕1235-4如因果函数的象函数,求以下函数的象函数。〔1〕〔4〕5-6求以下象函数的原函数的初值和终值。〔1〕〔2〕5-7求图5-2所示在时接入的有始周期信号的象函数。图5-25-8求以下各象函数的拉普拉斯变换。〔1〕〔3〕〔5〕〔7〕〔9〕5-9求以下象函数的拉普拉斯变换,并粗略画出它们的波形图。〔1〕〔3〕〔6〕其波形如以以下列图所示:其波形如以以下列图所示:其波形如以以下列图所示:5-10以下象函数的原函数是接入的有始周期信号,求周期T并写出其第一个周期〔〕的时间函数表达式。〔1〕〔2〕5-12用拉普拉斯变换法解微分方程的零输入响应和零状态响应。〔1〕。〔2〕。5-13描述某系统的输出和的联立微分方程为〔1〕,,,求零状态响应,。5-15描述某LTI系统的微分方程为求在以下条件下的零输入响应和零状态响应。〔1〕。〔2〕。5-16描述描述某LTI系统的微分方程为求在以下条件下的零输入响应和零状态响应。〔1〕。〔2〕。5-17求以下方程所描述的LTI系统的冲激响应和阶跃响应。〔1〕5-18系统函数和初始状态如下,求系统的零输入响应。〔1〕,〔3〕,5-22如图5-5所示的复合系统,由4个子系统连接组成,假设各子系统的系统函数或冲激响应分别为,,,,求复合系统的冲激响应。5-26如图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论