版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.2.2平面与平面平行的判定
平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.(2)直线与平面平行的判定定理.(1)定义法;线线平行线面平行1.
判断直线与平面平行的方法有哪些?直线与平面没有公共点.旧知复习:(1)平行(2)相交2.
平面与平面有几种位置关系?旧知复习:定义:如果两个平面没有公共点,那么这两个平面互相平行,也叫做平行平面.平面平行于平面,记作∥.怎样判定平面与平面平行呢?问题:如何判定平面和平面平行?1.如果两个平面平行,那么在其中一个平面内的所有直线一定都和另一个平面平行;由两个平面平行的定义可得:2.反过来,如果一个平面内的所有直线都和另一个平面平行,那么这两个平面平行.面面平行线面平行转化启示(两平面平行)(两平面相交)问题探究:(两平面平行)(两平面相交)问题探究:问题探究:(两平面平行)结论
一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.平面与平面平行的判定定理(1)简记为:线面平行面面平行P(3)符号表示
①内②交③平行(2)图形表示线不在多,贵在相交随堂练习:下面的说法正确吗?(1)如果一个平面内有两条直线分别平行于另一个平面,那么这两个平面平行.()(2)如果一个平面内有无数条直线分别平行于另一个平面,那么这两个平面平行.()(3)如果一个平面内任意一条直线平行于另一个平面,那么这两个平面平行.()××例1:已知正方体ABCD-A1B1C1D1,求证:平面AB1D1∥平面C1BD.CA1C1ADD1B1B应用
证明:∵ABCD-A1B1C1D1是正方体,∴D1C1//AB,DC=AB,∴四边形ABC1D1为平行四边形,∴D1A//C1B,
又AD1
平面C1BD,
BC1
平面C1BD,∴D1A//平面C1BD,同理B1D1//平面C1BD,又D1A
D1B1=D1,D1A平面AB1D1,D1B1
平面AB1D1,∴平面AB1D1//平面C1BD.CA1C1ADD1B1B第一步:在一个平面内找出两条相交直线;第二步:证明这两条相交直线分别平行于另一个平面。第三步:利用判定定理得出结论。证明两个平面平行的一般步骤:变式:已知正方体ABCD-A1B1C1D1(如图),
P,Q,R分别为A1A,A1B1,A1D1的中点,求证:平面PQR∥平面C1BD.D1RQDCBAC1B1A1P例2如图:三棱锥P-ABC,D,E,F分别是棱PA,PB,PC中点,
求证:平面DEF∥平面ABC。PDEFABC(1)平行于同一直线的两个平面平行.()
×βαa(2)过平面外一点,只可作1个平面与已知平面平行
()
√
(3)设a,b为异面直线,则存在平面α,β,使
()βαab√推论:平行于同一个平面的两个平面平行。练习:、、为三个不重合的平面,a,b,c为三条不同直线,则下列命题,正确的是
.①②③④⑤⑥①④1.通过本节课的学习,判断平面与平面平行的方法有:
2.应用判定定理判定面面平行时应注意:
3.应用判定定理判定面面平行的关键:
4.找平行线的方法有:
5.本节课我们用到的数学思想与方法:
小结与反思(1)定义法;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医药产品购销合同
- 报刊合作协议范文
- 2024年销售交易协议样本版B版
- 工伤赔偿协议书模板
- 2024年高标准砌体抹灰劳务分包合同3篇
- 建筑力学轴向拉伸与压缩概念题
- 2025年度新能源发电项目投资合作协议参考范文3篇
- 2024水电站工程结算与支付管理合同3篇
- 2020年中国与国际指南:结节病诊治指南的比较
- 2024年简易工程承包协议细则版B版
- 钢箱梁计算分析与案例详解
- 苯酚及酚类37张课件
- 2021年上海期货交易所校园招聘笔试试题及答案解析
- 医联体综合绩效考核指标体系(医联体医院)
- DB12T 693-2016 天津市文书类电子文件数据存储结构规范
- 矿业煤矿企业NOSA安健环风险管理体系推行工作指南(2022版)
- 新项目开发商业计划书模板ppt
- 2021年中国华电集团公司组织架构和部门职能
- 林业标准林业调查规划设计收费依据及标准
- 数学归纳法原理第二归纳法跳跃归纳法反向归纳法
- 七年级数学几何证明题(典型)
评论
0/150
提交评论