版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设平面与平面相交于直线,直线在平面内,直线在平面内,且则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.即不充分不必要条件2.已知函数,则的值等于()A.2018 B.1009 C.1010 D.20203.已知点是双曲线上一点,若点到双曲线的两条渐近线的距离之积为,则双曲线的离心率为()A. B. C. D.24.已知数列满足:)若正整数使得成立,则()A.16 B.17 C.18 D.195.在中,内角A,B,C所对的边分别为a,b,c,且.若,的面积为,则()A.5 B. C.4 D.166.()A. B. C. D.7.为得到y=sin(2x-πA.向左平移π3个单位B.向左平移πC.向右平移π3个单位D.向右平移π8.二项式展开式中,项的系数为()A. B. C. D.9.下列函数中,图象关于轴对称的为()A. B.,C. D.10.定义在R上的函数满足,为的导函数,已知的图象如图所示,若两个正数满足,的取值范围是()A. B. C. D.11.已知函数满足,设,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.已知全集,则集合的子集个数为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知的展开式中项的系数与项的系数分别为135与,则展开式所有项系数之和为______.14.若非零向量,满足,,,则______.15.如图所示,点,B均在抛物线上,等腰直角的斜边为BC,点C在x轴的正半轴上,则点B的坐标是________.16.设随机变量服从正态分布,若,则的值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数,,(Ⅰ)求曲线在点(1,0)处的切线方程;(Ⅱ)求函数在区间上的取值范围.18.(12分)已知函数的最小正周期是,且当时,取得最大值.(1)求的解析式;(2)作出在上的图象(要列表).19.(12分)设,函数.(1)当时,求在内的极值;(2)设函数,当有两个极值点时,总有,求实数的值.20.(12分)以直角坐标系的原点为极点,轴的非负半轴为极轴,且两坐标系取相同的长度单位.已知曲线的参数方程:(为参数),直线的极坐标方程:(1)求曲线的极坐标方程;(2)若直线与曲线交于、两点,求的最大值.21.(12分)已知如图1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D为AC中点,AEBD于E,延长AE交BC于F,将△ABD沿BD折起,使平面ABD平面BCD,如图2所示。(Ⅰ)求证:AE平面BCD;(Ⅱ)求二面角A-DC-B的余弦值;(Ⅲ)求三棱锥B-AEF与四棱锥A-FEDC的体积的比(只需写出结果,不要求过程).22.(10分)在等比数列中,已知,.设数列的前n项和为,且,(,).(1)求数列的通项公式;(2)证明:数列是等差数列;(3)是否存在等差数列,使得对任意,都有?若存在,求出所有符合题意的等差数列;若不存在,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】
试题分析:α⊥β,b⊥m又直线a在平面α内,所以a⊥b,但直线不一定相交,所以“α⊥β”是“a⊥b”的充分不必要条件,故选A.考点:充分条件、必要条件.2.C【解析】
首先,根据二倍角公式和辅助角公式化简函数解析式,根据所求函数的周期性,得到其周期为4,然后借助于三角函数的周期性确定其值即可.【详解】解:.,,的周期为,,,,,..故选:C【点睛】本题重点考查了三角函数的图象与性质、三角恒等变换等知识,掌握辅助角公式化简函数解析式是解题的关键,属于中档题.3.A【解析】
设点的坐标为,代入椭圆方程可得,然后分别求出点到两条渐近线的距离,由距离之积为,并结合,可得到的齐次方程,进而可求出离心率的值.【详解】设点的坐标为,有,得.双曲线的两条渐近线方程为和,则点到双曲线的两条渐近线的距离之积为,所以,则,即,故,即,所以.故选:A.【点睛】本题考查双曲线的离心率,构造的齐次方程是解决本题的关键,属于中档题.4.B【解析】
计算,故,解得答案.【详解】当时,,即,且.故,,故.故选:.【点睛】本题考查了数列的相关计算,意在考查学生的计算能力和对于数列公式方法的综合应用.5.C【解析】
根据正弦定理边化角以及三角函数公式可得,再根据面积公式可求得,再代入余弦定理求解即可.【详解】中,,由正弦定理得,又,∴,又,∴,∴,又,∴.∵,∴,∵,∴由余弦定理可得,∴,可得.故选:C【点睛】本题主要考查了解三角形中正余弦定理与面积公式的运用,属于中档题.6.A【解析】
分子分母同乘,即根据复数的除法法则求解即可.【详解】解:,故选:A【点睛】本题考查复数的除法运算,属于基础题.7.D【解析】试题分析:因为,所以为得到y=sin(2x-π3)的图象,只需要将考点:三角函数的图像变换.8.D【解析】
写出二项式的通项公式,再分析的系数求解即可.【详解】二项式展开式的通项为,令,得,故项的系数为.故选:D【点睛】本题主要考查了二项式定理的运算,属于基础题.9.D【解析】
图象关于轴对称的函数为偶函数,用偶函数的定义及性质对选项进行判断可解.【详解】图象关于轴对称的函数为偶函数;A中,,,故为奇函数;B中,的定义域为,不关于原点对称,故为非奇非偶函数;C中,由正弦函数性质可知,为奇函数;D中,且,,故为偶函数.故选:D.【点睛】本题考查判断函数奇偶性.判断函数奇偶性的两种方法:(1)定义法:对于函数的定义域内任意一个都有,则函数是奇函数;都有,则函数是偶函数(2)图象法:函数是奇(偶)函数函数图象关于原点(轴)对称.10.C【解析】
先从函数单调性判断的取值范围,再通过题中所给的是正数这一条件和常用不等式方法来确定的取值范围.【详解】由的图象知函数在区间单调递增,而,故由可知.故,又有,综上得的取值范围是.故选:C【点睛】本题考查了函数单调性和不等式的基础知识,属于中档题.11.B【解析】
结合函数的对应性,利用充分条件和必要条件的定义进行判断即可.【详解】解:若,则,即成立,若,则由,得,则“”是“”的必要不充分条件,故选:B.【点睛】本题主要考查充分条件和必要条件的判断,结合函数的对应性是解决本题的关键,属于基础题.12.C【解析】
先求B.再求,求得则子集个数可求【详解】由题=,则集合,故其子集个数为故选C【点睛】此题考查了交、并、补集的混合运算及子集个数,熟练掌握各自的定义是解本题的关键,是基础题二、填空题:本题共4小题,每小题5分,共20分。13.64【解析】
由题意先求得的值,再令求出展开式中所有项的系数和.【详解】的展开式中项的系数与项的系数分别为135与,,,由两式可组成方程组,解得或,令,求得展开式中所有的系数之和为.故答案为:64【点睛】本题考查了二项式定理,考查了赋值法求多项式展开式的系数和,属于基础题.14.1【解析】
根据向量的模长公式以及数量积公式,得出,解方程即可得出答案.【详解】,即解得或(舍)故答案为:【点睛】本题主要考查了向量的数量积公式以及模长公式的应用,属于中档题.15.【解析】
设出两点的坐标,结合抛物线方程、两条直线垂直的条件以及两点间的距离公式列方程,解方程求得的坐标.【详解】设,由于在抛物线上,所以.由于三角形是等腰直角三角形,,所以.由得,化为,可得,所以,解得,则.所以.故答案为:【点睛】本题考查抛物线的方程和运用,考查方程思想和运算能力,属于中档题.16.1【解析】
由题得,解不等式得解.【详解】因为,所以,所以c=1.故答案为1【点睛】本题主要考查正态分布的图像和性质,意在考查学生对该知识的理解掌握水平和分析推理能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)【解析】分析:(1)先断定在曲线上,从而需要求,令,求得结果,注意复合函数求导法则,接着应用点斜式写出直线的方程;(2)先将函数解析式求出,之后借助于导数研究函数的单调性,从而求得函数在相应区间上的最值.详解:(Ⅰ)当,.,当,,所以切线方程为.(Ⅱ),,因为,所以.令,,则在单调递减,因为,所以在上增,在单调递增.,,因为,所以在区间上的值域为.点睛:该题考查的是有关应用导数研究函数的问题,涉及到的知识点有导数的几何意义,曲线在某个点处的切线方程的求法,复合函数求导,函数在给定区间上的最值等,在解题的过程中,需要对公式的正确使用.18.(1);(2)见解析.【解析】
(1)根据函数的最小正周期可求出的值,由该函数的最大值可得出的值,再由,结合的取值范围可求得的值,由此可得出函数的解析式;(2)由计算出的取值范围,据此列表、描点、连线可得出函数在区间上的图象.【详解】(1)因为函数的最小正周期是,所以.又因为当时,函数取得最大值,所以,同时,得,因为,所以,所以;(2)因为,所以,列表如下:描点、连线得图象:【点睛】本题考查正弦函数解析式的求解,同时也考查了利用五点作图法作图,考查分析问题与解决问题的能力,属于中等题.19.(1)极大值是,无极小值;(2)【解析】
(1)当时,可求得,令,利用导数可判断的单调性并得其零点,从而可得原函数的极值点及极大值;(2)表示出,并求得,由题意,得方程有两个不同的实根,,从而可得△及,由,得.则可化为对任意的恒成立,按照、、三种情况分类讨论,分离参数后转化为求函数的最值可解决;【详解】(1)当时,.令,则,显然在上单调递减,又因为,故时,总有,所以在上单调递减.由于,所以当时,;当时,.当变化时,的变化情况如下表:+-增极大减所以在上的极大值是,无极小值.(2)由于,则.由题意,方程有两个不等实根,则,解得,且,又,所以.由,,可得又.将其代入上式得:.整理得,即当时,不等式恒成立,即.当时,恒成立,即,令,易证是上的减函数.因此,当时,,故.当时,恒成立,即,因此,当时,所以.综上所述,.【点睛】本题考查利用导数求函数的最值、研究函数的极值等知识,考查分类讨论思想、转化思想,考查学生综合运用知识分析问题解决问题的能力,该题综合性强,难度大,对能力要求较高.20.(1);(2)10【解析】
(1)消去参数,可得曲线C的普通方程,再根据极坐标与直角坐标的互化公式,代入即可求得曲线C的极坐标方程;(2)将代入曲线C的极坐标方程,利用根与系数的关系,求得,进而得到=,结合三角函数的性质,即可求解.【详解】(1)由题意,曲线C的参数方程为,消去参数,可得曲线C的普通方程为,即,又由,代入可得曲线C的极坐标方程为.(2)将代入,得,即,所以=,其中,当时,取最大值,最大值为10.【点睛】本题主要考查了参数方程与普通方程,极坐标方程与直角坐标方程的互化,以及曲线的极坐标方程的应用,着重考查了运算与求解能力,属于中档试题.21.(Ⅰ)证明见解析;(Ⅱ);(Ⅲ)1:5【解析】
(Ⅰ)由平面ABD⊥平面BCD,交线为BD,AE⊥BD于E,能证明AE⊥平面BCD;(Ⅱ)以E为坐标原点,分别以EF、ED、EA所在直线为x轴,y轴,z轴,建立空间直角坐标系E-xyz,利用向量法求出二面角A-DC-B的余弦值;(Ⅲ)利用体积公式分别求出三棱锥B-AEF与四棱锥A-FEDC的体积,再作比写出答案即可.【详解】(Ⅰ)证明:∵平面ABD⊥平面BCD,交线为BD,又在△ABD中,AE⊥BD于E,AE⊂平面ABD,∴AE⊥平面BCD.(Ⅱ)由(1)知AE⊥平面BCD,∴AE⊥EF,由题意知EF⊥BD,又AE⊥BD,如图,以E为坐标原点,分别以EF、ED、EA所在直线为x轴,y轴,z轴,
建立空间直角坐标系E-xyz,设AB=BD=DC=AD=2,
则BE=ED=1,∴AE=,BC=2,BF=,则E(0,0,0),D(0,1,0),B(0,-1,0),A(0,0,),
F(,0,0),C(,2,0),,,由AE⊥平面BCD知平面BCD的一个法向量为,设平面ADC的一个法向量,则,取x=1,得,∴,∴二面角A-DC-B的平面角为锐角,故余弦值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024债务担保服务合同标准文本3篇
- 2024年沪教版四年级语文下册阶段测试试卷
- 2024年鲁人新版七年级数学上册月考试卷
- 创新学生心理健康教育在科技教育中的应用
- 办公环境下的家庭健康菜谱推广策略
- 商务礼仪在家庭与社交中的艺术运用
- 中小学教育中数学与自然科学知识融合教学的案例分析
- 办公心理学与家园共育的融合实践
- 不同年龄段对教育信息接受度差异的深度研究
- 2025中国铁路北京局集团限公司招聘189人(三)高频重点提升(共500题)附带答案详解
- 文玩交易合同(2篇)
- 智研咨询发布-2024年中国牛油果行业现状、发展环境及投资前景分析报告
- 杭州市西湖区2024年三年级数学第一学期期末学业质量监测试题含解析
- 眼视光学理论与方法智慧树知到答案2024年温州医科大学
- 2022-2023学年广东省广州市花都区六年级(上)期末英语试卷(含答案)
- 公司合伙人合作协议书范本
- 2024年中考地理复习 人教版全四册重点知识提纲
- 电梯季度维护保养项目表
- GB/T 44188-2024危险货物爆炸品无约束包装件试验方法
- 机动车检测站质量手册(根据补充技术要求修订)
- 2024年(学习强国)思想政治理论知识考试题库与答案
评论
0/150
提交评论