版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.方程x2﹣5=0的实数解为()A. B. C. D.±52.如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()A. B. C. D.3.如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段AB,则点B的对应点B′的坐标是()A.(-4,1) B.(-1,2) C.(4,-1) D.(1,-2)4.如图,AB是圆O的直径,CD是圆O的弦,若,则()A. B. C. D.5.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是A.88° B.92° C.106° D.136°6.如图所示,∆ABC的顶点在正方形网格的格点上,则cosB=()A. B. C. D.7.某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:则这些学生年龄的众数和中位数分别是()年龄1314151617人数12231A.16,15 B.16,14 C.15,15 D.14,158.如图,在扇形纸片AOB中,OA=10,ÐAOB=36°,OB在直线l上.将此扇形沿l按顺时针方向旋转(旋转过程中无滑动),当OA落在l上时,停止旋转.则点O所经过的路线长为()A.12π B.11π C.10π D.10π+59.已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:则下列判断中正确的是()
x
…
﹣1
0
1
2
…
y
…
﹣5
1
3
1
…A.抛物线开口向上
B.抛物线与y轴交于负半轴C.当x=3时,y<0
D.方程ax2+bx+c=0有两个相等实数根10.一组数据由五个正整数组成,中位数是3,且惟一众数是7,则这五个正整数的平均数是()A.4 B.5 C.6 D.811.二次函数的图象与轴有且只有一个交点,则的值为()A.1或-3 B.5或-3 C.-5或3 D.-1或312.下列运算正确的是()A.a•a1=a B.(2a)3=6a3 C.a6÷a2=a3 D.2a2﹣a2=a2二、填空题(每题4分,共24分)13.一元二次方程的根是.14.一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是_____.15.二次函数向左、下各平移个单位,所得的函数解析式_______.16.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数的图像上,OA=1,OC=6,则正方形ADEF的边长为.17.如图,某水坝的坡比为,坡长为米,则该水坝的高度为__________米.18.直角三角形三角形两直角边长为3和4,三角形内一点到各边距离相等,那么这个距离为________.三、解答题(共78分)19.(8分)如图,已知抛物线与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1.(1)求此抛物线的解析式以及点B的坐标.(2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动.过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒.①当t为何值时,四边形OMPN为矩形.②当t>0时,△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.20.(8分)如图,AB=3AC,BD=3AE,又BD∥AC,点B,A,E在同一条直线上.求证:△ABD∽△CAE21.(8分)抛物线的图像与轴的一个交点为,另一交点为,与轴交于点,对称轴是直线.(1)求该二次函数的表达式及顶点坐标;(2)画出此二次函数的大致图象;利用图象回答:当取何值时,?(3)若点在抛物线的图像上,且点到轴距离小于3,则的取值范围为;22.(10分)如图,AB是⊙O的直径,AC是⊙O的弦,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E,连接BD.(1)求证:DE是⊙O的切线;(2)若BD=3,AD=4,则DE=.23.(10分)如图,海中有两个小岛,,某渔船在海中的处测得小岛D位于东北方向上,且相距,该渔船自西向东航行一段时间到达点处,此时测得小岛恰好在点的正北方向上,且相距,又测得点与小岛相距.(1)求的值;(2)求小岛,之间的距离(计算过程中的数据不取近似值).24.(10分)如图,在中,,.(1)在边上求作一点,使得.(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,求证:为线段的黄金分割点.25.(12分)如图,AB是⊙O的直径,半径OD与弦AC垂直,若∠A=∠D,求∠1的度数.26.如图,ABCD是一块边长为4米的正方形苗圃,园林部门拟将其改造为矩形AEFG的形状,其中点E在AB边上,点G在AD的延长线上,DG
=2BE.设BE的长为x米,改造后苗圃AEFG的面积为y平方米.(1)求y与x之间的函数关系式(不需写自变量的取值范围);(2)根据改造方案,改造后的矩形苗圃AEFG的面积与原正方形苗圃ABCD的面积相等,请问此时BE的长为多少米?
参考答案一、选择题(每题4分,共48分)1、C【分析】利用直接开平方法求解可得.【详解】解:∵x2﹣5=0,∴x2=5,则x=,故选:C.【点睛】本题考查解方程,熟练掌握计算法则是解题关键.2、D【分析】可过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.【详解】过点A向BC作AH⊥BC于点H,所以根据相似比可知:,即EF=2(6-x)所以y=×2(6-x)x=-x2+6x.(0<x<6)该函数图象是抛物线的一部分,故选D.【点睛】此题考查根据几何图形的性质确定函数的图象和函数图象的读图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.3、D【解析】在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.【详解】将线段AB先向右平移5个单位,点B(2,1),连接OB,顺时针旋转90°,则B'对应坐标为(1,-2),故选D.【点睛】本题考查了图形的平移与旋转,熟练运用平移与旋转的性质是解题的关键.4、A【分析】根据同弧所对的圆周角相等可得,再根据圆直径所对的圆周角是直角,可得,再根据三角形内角和定理即可求出的度数.【详解】∵∴∵AB是圆O的直径∴∴故答案为:A.【点睛】本题考查了圆内接三角形的角度问题,掌握同弧所对的圆周角相等、圆直径所对的圆周角是直角、三角形内角和定理是解题的关键.5、D【分析】首先根据∠BOD=88°,应用圆周角定理,求出∠BAD的度数;然后根据圆内接四边形的性质,可得∠BAD+∠BCD=180°,据此求出∠BCD的度数【详解】由圆周角定理可得∠BAD=∠BOD=44°,根据圆内接四边形对角互补可得∠BCD=180°-∠BAD=180°-44°=136°,故答案选D.考点:圆周角定理;圆内接四边形对角互补.6、C【分析】先设小正方形的边长为1,再建构直角三角形,然后根据锐角三角函数的定义求解即可;【详解】解:如图,过A作AD⊥CB于D,设小正方形的边长为1,则BD=AD=3,AB=∴cos∠B=;故选C.【点睛】本题主要考查了锐角三角函数的定义,勾股定理,掌握锐角三角函数的定义,勾股定理是解题的关键.7、A【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】解:由表可知16岁出现次数最多,所以众数为16岁,因为共有1+2+2+3+1=9个数据,所以中位数为第5个数据,即中位数为15岁,故选:A.【点睛】本题考查了众数及中位数的定义,众数是一组数据中出现次数最多的那个数.当有奇数个数时,中位数是从小到大排列顺序后位于中间位置的数;当有偶数个数时,中位数是从小到大排列顺序后位于中间位置两个数的平均数.8、A【分析】点O所经过的路线是三段弧,一段是以点B为圆心,10为半径,圆心角为90°的弧,另一段是一条线段,和弧AB一样长的线段,最后一段是以点A为圆心,10为半径,圆心角为90°的弧,从而得出答案.【详解】由题意得点O所经过的路线长=90π×10故选A.【点睛】解题的关键是熟练掌握弧长公式:,注意在使用公式时度不带单位.9、C【解析】根据表格的数据,描点连线得,根据函数图像,得:抛物线开口向下;抛物线与y轴交于正半轴;当x=3时,y<0;方程有两个相等实数根.故选C.10、A【分析】根据题意,五个正整数中3是中位数,唯一众数是7,可以得知比3大的有2个数,比3小的有2个数,且7有2个,然后求出这五个数的平均数即可.【详解】由五个正整数知,中位数是3说明比3大的有2个数,比3小的有2个数,唯一众数是7,则7有2个,所以这五个正整数分别是1、2、3、7、7,计算平均数是(1+2+3+7+7)÷5=4,故选:A.【点睛】本题考查了数据的收集与处理,中位数,众数,平均数的概念以及应用,掌握数据的收集与处理是解题的关键.11、B【分析】由二次函数y=x2-(m-1)x+4的图象与x轴有且只有一个交点,可知△=0,继而求得答案.【详解】解:∵二次函数y=x2-(m-1)x+4的图象与x轴有且只有一个交点,∴△=b2-4ac=[-(m-1)]2-4×1×4=0,∴(m-1)2=16,解得:m-1=±4,∴m1=5,m2=-1.∴m的值为5或-1.故选:B.【点睛】此题考查了抛物线与x轴的交点问题,注意掌握二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.△=b2-4ac决定抛物线与x轴的交点个数.△>0时,抛物线与x轴有2个交点;△=0时,抛物线与x轴有1个交点;△<0时,抛物线与x轴没有交点.12、D【分析】根据同底数幂的乘法法则,积的乘方运算法则,同底数幂的除法法则以及合并同类项法则逐一判断即可.【详解】A.a•a1=a2,故本选项不合题意;B.(2a)3=8a3,故本选项不合题意;C.a6÷a2=a4,故本选项不合题意;D.2a2﹣a2=a2,正确,故本选项符合题意.故选:D.【点睛】本题考查的是幂的运算,比较简单,需要牢记幂的运算公式.二、填空题(每题4分,共24分)13、【解析】四种解一元二次方程的解法即:直接开平方法,配方法,公式法,因式分解法.注意识别使用简单的方法进行求解,此题应用因式分解法较为简捷,因此,.14、1【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【详解】解:掷一次骰子,向上的一面出现的点数是3的倍数的有3,6,故骰子向上的一面出现的点数是3的倍数的概率是:26故答案为13【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.15、【分析】根据二次函数图象的平移规律即可得.【详解】二次函数向左平移2个单位所得的函数解析式为,再向下平移2个单位所得的函数解析式为,即,故答案为:.【点睛】本题考查了二次函数图象的平移规律,掌握理解二次函数图象的平移规律是解题关键.16、2【解析】试题分析:由OA=1,OC=6,可得矩形OABC的面积为6;再根据反比例函数系数k的几何意义,可知k=6,∴反比例函数的解析式为;设正方形ADEF的边长为a,则点E的坐标为(a+1,a),∵点E在抛物线上,∴,整理得,解得或(舍去),故正方形ADEF的边长是2.考点:反比例函数系数k的几何意义.17、【分析】根据坡度的定义,可得,从而得∠A=30°,进而即可求解.【详解】∵水坝的坡比为,∠C=90°,∴,即:tan∠A=∴∠A=30°,∵为米,∴为1米.故答案是:1.【点睛】本题主要考查坡度的定义和三角函数的定义,掌握坡度的定义,是解题的关键.18、1【解析】连接OA,OB,OC利用小三角形的面积和等于大三角形的面积即可解答【详解】解:连接OA,OB,OC,则点O到三边的距离就是△AOC,△BOC,△AOB的高线,设到三边的距离是x,则三个三角形的面积的和是:AC•x+BC•x+AB•x=AC•BC,由题意可得:AC=4,BC=3,AB=5∴×4•x+×3•x+×5•x=×3×4解得:x=1.故答案为:1.【点睛】本题中点到三边的距离就是直角三角形的内切圆的半径长,内切圆的半径=.三、解答题(共78分)19、(1),B点坐标为(3,0);(2)①;②.【分析】(1)由对称轴公式可求得b,由A点坐标可求得c,则可求得抛物线解析式;再令y=0可求得B点坐标;(2)①用t可表示出ON和OM,则可表示出P点坐标,即可表示出PM的长,由矩形的性质可得ON=PM,可得到关于t的方程,可求得t的值;②由题意可知OB=OA,故当△BOQ为等腰三角形时,只能有OB=BQ或OQ=BQ,用t可表示出Q点的坐标,则可表示出OQ和BQ的长,分别得到关于t的方程,可求得t的值.【详解】(1)∵抛物线对称轴是直线x=1,∴﹣=1,解得b=2,∵抛物线过A(0,3),∴c=3,∴抛物线解析式为,令y=0可得,解得x=﹣1或x=3,∴B点坐标为(3,0);(2)①由题意可知ON=3t,OM=2t,∵P在抛物线上,∴P(2t,),∵四边形OMPN为矩形,∴ON=PM,∴3t=,解得t=1或t=﹣(舍去),∴当t的值为1时,四边形OMPN为矩形;②∵A(0,3),B(3,0),∴OA=OB=3,且可求得直线AB解析式为y=﹣x+3,∴当t>0时,OQ≠OB,∴当△BOQ为等腰三角形时,有OB=QB或OQ=BQ两种情况,由题意可知OM=2t,∴Q(2t,﹣2t+3),∴OQ=,BQ=|2t﹣3|,又由题意可知0<t<1,当OB=QB时,则有|2t﹣3|=3,解得t=(舍去)或t=;当OQ=BQ时,则有=|2t﹣3|,解得t=;综上可知当t的值为或时,△BOQ为等腰三角形.20、见解析【分析】根据已知条件,易证得AB:AC和BD:AE的值相等,由BD∥AC,得∠EAC=∠B;由此可根据SAS判定两个三角形相似.【详解】证明:∵,∴∵∴∴.【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定是解题的关键.21、(1),;(2)见解析,或;(3)【分析】(1)根据图像对称轴是直线,得到,再将,代入解析式,得到关于a、b、c的方程组,即可求得系数,得到解析式,再求出顶点坐标即可;(2)根据特定点画出二次函数的大致图象,根据二次函数与不等式的关系,即可得到对应的x的取值范围.(3)求出当时,当时,y的值,即可求出的取值范围.【详解】(1)因为图像对称轴是直线,所以,将,代入解析式,得:由题知,解得,所以解析式为:;当时,,所以顶点坐标.(2)二次函数的大致图象:当或,.(3)当时,得,当时,得,所以y取值范围为,即的取值范围为.【点睛】本题考查了待定系数法的求解析式、二元一次方程与不等式的关系,本题难度不大,是二次函数中经常考查的类型.22、(1)见解析;(2)【分析】(1)连接OD,如图,先证明OD∥AE,再利用DE⊥AE得到OD⊥DE,然后根据切线的判定定理得到结论;(2)证明△ABD∽△ADE,通过线段比例关系求出DE的长.【详解】(1)证明:连接OD∵AD平分∠BAC∴∠BAD=∠DAC∵OA=OD∴∠BAD=∠ODA∴∠ODA=∠DAC∴OD∥AE∴∠ODE+∠E=180°∵DE⊥AE∴∠E=90°∴∠ODE=180°-∠E=180°-90°=90°,即OD⊥DE∵点D在⊙O上∴DE是⊙O的切线.(2)∵AB是⊙O的直径,∴∠ADB=90°,∵AD平分∠BAC,∴∠BAD=∠DAE,在△ABD和△ADE中,,∴△ABD∽△ADE,∴,∵BD=3,AD=4,AB==5∴DE==.【点睛】本题考查了切线的判定定理,相似三角形的判定和性质,适当画出正确的辅助线是解题的关键.23、(1);(2)小岛、相距.【解析】(1)如图,过点作,垂足为,在中,先求出DE长,然后在在中,根据正弦的定义由即可求得答案;(2)过点作,垂足为,则四边形BEDF是矩形,在中,利用勾股定理求出BE长,再由矩形的性质可得,,继而得CF长,在中,利用勾股定理求出CD长即可.【详解】(1)如图,过点作,垂足为,在中,,,∴在中,,∴;(2)过点作,垂足为,则四边形BEDF是矩形,在中,,,∴,∵四边形是矩形,∴,,∴,在中,,因此小岛、相距.【点睛】本题考查了解直角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《保温混凝土介绍》课件
- 慢性鼻-鼻窦炎的健康宣教
- 诱导性荨麻疹的临床护理
- 《保险发展简史》课件
- 2021年节能装备行业双良节能分析报告
- 电子电路CAD技术课件 自动保存的
- 鼻腔前部出血的健康宣教
- 瓜氨酸血症的临床护理
- 肛周皮炎的临床护理
- JJF(陕) 039-2020 直流、工频峰值电压表校准规范
- 维修方案范文
- 子宫内膜异位症诊疗指南完整PPT
- 中钢集团马鞍山矿院新材料科技有限公司300吨-年碳气凝胶新材料建设项目环境影响报告书
- 液压自爬模架体及模板受力计算书计算书
- 事业单位人事管理工作情况调研报告
- 外科术后大出血的处理-课件
- 电梯销售代理商协议书
- 高水平现代农业技术专业群建设方案
- 导管相关性血流感染
- Ubuntu Linux操作系统试卷和答案
- 螺栓球网架原地安装整体吊装施工工法高岩
评论
0/150
提交评论