版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.二次函数y=x2+4x+3,当0≤x≤时,y的最大值为()A.3 B.7 C. D.2.如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.已知cos∠ACD=,BC=4,则AC的长为()A.1 B. C.3 D.3.下列说法正确的是()A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.某种彩票的中奖率为,说明每买1000张彩票,一定有一张中奖C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为D.“概率为1的事件”是必然事件4.下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形 B.平行四边形 C.正五边形 D.圆5.将抛物线y=ax2+bx+c向左平移2个单位,再向下平移3个单位得抛物线y=﹣(x+2)2+3,则()A.a=﹣1,b=﹣8,c=﹣10 B.a=﹣1,b=﹣8,c=﹣16C.a=﹣1,b=0,c=0 D.a=﹣1,b=0,c=66.如果关于x的一元二次方程x2+4x+a=0的两个不相等实数根x1,x2满足x1x2﹣2x1﹣2x2﹣5=0,那么a的值为()A.3 B.﹣3 C.13 D.﹣137.下列关于x的方程是一元二次方程的有()①ax2+bx+c=0②x2=0③④A.②和③ B.①和② C.③和④ D.①和④8.下列各组图形中,是相似图形的是()A. B.C. D.9.下列关于三角形的内心说法正确的是()A.内心是三角形三条角平分线的交点B.内心是三角形三边中垂线的交点C.内心到三角形三个顶点的距离相等D.钝角三角形的内心在三角形外10.图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是A.当x=3时,EC<EM B.当y=9时,EC>EMC.当x增大时,EC·CF的值增大. D.当y增大时,BE·DF的值不变.11.若整数a使关于x的分式方程=2有整数解,且使关于x的不等式组至少有4个整数解,则满足条件的所有整数a的和是()A.﹣14 B.﹣17 C.﹣20 D.﹣2312.在平面直角坐标系中,点(-2,6)关于原点对称的点的坐标是()A.(2,-6) B.(-2,6) C.(-6,2) D.(-6,2)二、填空题(每题4分,共24分)13.如图是小明在抛掷图钉的试验中得到的图钉针尖朝上的折线统计图,请你估计抛掷图钉针尖朝上的概率是_____.14.比较大小:_____1.(填“>”、“=”或“<”)15.如图,反比例函数的图象经过点,过作轴垂线,垂足是是轴上任意一点,则的面积是_________.16.在一个不透明的塑料袋中装有红色白色球共个.除颜色外其他都相同,小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在左右,则口袋中红色球可能有________个.17.若方程有两个相等的实数根,则m=________.18.一元二次方程2x2+3x+1=0的两个根之和为__________.三、解答题(共78分)19.(8分)某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表.请根据统计图表中的信息,解答下列问题:(1)求被抽查的学生人数和m的值;(2)求本次抽查的学生文章阅读篇数的中位数和众数;(3)若该校共有1200名学生,根据抽查结果,估计该校学生在这一周内文章阅读的篇数为4篇的人数。20.(8分)网络比网络的传输速度快10倍以上,因此人们对产品充满期待.华为集团计划2020年元月开始销售一款产品.根据市场营销部的规划,该产品的销售价格将随销售月份的变化而变化.若该产品第个月(为正整数)销售价格为元/台,与满足如图所示的一次函数关系:且第个月的销售数量(万台)与的关系为.(1)该产品第6个月每台销售价格为______元;(2)求该产品第几个月的销售额最大?该月的销售价格是多少元/台?(3)若华为董事会要求销售该产品的月销售额不低于27500万元,则预计销售部符合销售要求的是哪几个月?(4)若每销售1万台该产品需要在销售额中扣除元推广费用,当时销售利润最大值为22500万元时,求的值.21.(8分)在Rt△ABC中,∠BCA=90°,∠A<∠ABC,D是AC边上一点,且DA=DB,O是AB的中点,CE是△BCD的中线.(1)如图a,连接OC,请直接写出∠OCE和∠OAC的数量关系:;(2)点M是射线EC上的一个动点,将射线OM绕点O逆时针旋转得射线ON,使∠MON=∠ADB,ON与射线CA交于点N.①如图b,猜想并证明线段OM和线段ON之间的数量关系;②若∠BAC=30°,BC=m,当∠AON=15°时,请直接写出线段ME的长度(用含m的代数式表示).22.(10分)2019年10月1日,是新中国70周年的生日,在首都北京天安门广场举行了盛大的建国70周年大阅兵,接受的检阅,令国人振奋,令世界瞩目.在李克强总理庄严的指令下,56门礼炮,70响轰鸣,述说着56个民族,70载春华秋实的拼搏!图1是礼炮图片,图2是礼炮抽象示意图.已知:是水平线,,,的仰角分别是30°和10°,,,且.(1)求点的铅直高度;(2)求两点的水平距离.(结果精确到,参考数据:)23.(10分)2019年11月20日,“美丽玉环,文旦飘香”号冠名列车正式发车,为广大旅客带去“中国文旦之乡”的独特味道.根据市场调查,在文旦上市销售的30天中,其销售价格(元公斤)与第天之间满足函数(其中为正整数);销售量(公斤)与第天之间的函数关系如图所示,如果文旦上市期间每天的其他费用为100元.(1)求销售量与第天之间的函数关系式;(2)求在文旦上市销售的30天中,每天的销售利润与第天之间的函数关系式;(日销售利润=日销售额-日维护费)(3)求日销售利润的最大值及相应的的值.24.(10分)某乡镇要在生活垃圾存放区建一个老年活动中心,这样必须把1200立方米的生活垃圾运走.(1)假如每天能运x立方米,所需时间为y天,写出y与x之间的函数解析式(不要求写出自变量的取值范围);(2)若每辆拖拉机一天能运12立方米,则5辆这样的拖拉机要用多少天才能运完?25.(12分)如图,直线y=ax+b与x轴交于点A(4,0),与y轴交于点B(0,﹣2),与反比例函数y=(x>0)的图象交于点C(6,m).(1)求直线和反比例函数的表达式;(2)连接OC,在x轴上找一点P,使△OPC是以OC为腰的等腰三角形,请求出点P的坐标;(3)结合图象,请直接写出不等式≥ax+b的解集.26.《庄子·天下》:“一尺之棰,日取其半,万世不竭.”意思是说:一尺长的木棍,每天截掉一半,永远也截不完.我国智慧的古代人在两千多年前就有了数学极限思想,今天我们运用此数学思想研究下列问题.(规律探索)(1)如图1所示的是边长为1的正方形,将它剪掉一半,则S阴影1=1-=如图2,在图1的基础上,将阴影部分再裁剪掉—半,则S阴影2=1--()2=____;同种操作,如图3,S阴影3=1--()2-()3=__________;如图4,S阴影4=1--()2-()3-()4=___________;……若同种地操作n次,则S阴影n=1--()2-()3-…-()n=_________.于是归纳得到:+()2+()3+…+()n=_________.(理论推导)(2)阅读材料:求1+2+22+23+24+…+22015+22016的值.解:设S=1+2+22+23+24+…+22015+22016,①将①×2得:2S=2+22+23+24+…+22016+22017,②由②-①得:2S—S=22017—1,即=22017-1.即1+2+22+23+24+…+22015+22016=22017-1根据上述材料,试求出+()2+()3+…+()n的表达式,写出推导过程.(规律应用)(3)比较+++……__________1(填“”、“”或“=”)
参考答案一、选择题(每题4分,共48分)1、D【解析】利用配方法把二次函数解析式化为顶点式,根据二次函数的性质解答.【详解】解:y=x2+4x+3=x2+4x+4﹣1=(x+2)2﹣1,则当x>﹣2时,y随x的增大而增大,∴当x=时,y的最大值为()2+4×+3=,故选:D.【点睛】本题考查配方法把二次函数解析式化为顶点式根据二次函数性质解答的运用2、D【解析】∵AB是直径,∴∠ACB=90°.∵CD⊥AB,∴∠ADC=90°.∴∠ACD=∠B.在Rt△ABC中,∵,BC=4,∴,解得.∴.故选D.3、D【解析】试题解析:A、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B.某种彩票的中奖概率为,说明每买1000张,有可能中奖,也有可能不中奖,故B错误;C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为.故C错误;D.“概率为1的事件”是必然事件,正确.故选D.4、D【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】解:A、等边三角形是轴对称图形,不是中心对称图形,故A错误;B、平行四边形不是轴对称图形,是中心对称图形,故B错误;C、正五边形是轴对称图形,不是中心对称图形,故C错误;D、圆是轴对称图形,也是中心对称图形,故D正确.故选:D.【点睛】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.5、D【分析】将所得抛物线解析式整理成顶点式形式,然后写出顶点坐标,再根据向右平移横坐标加,向下平移减逆向求出原抛物线的顶点坐标,从而求出原抛物线解析式,再展开整理成一般形式,最后确定出a、b、c的值.【详解】解:∵y=-(x+2)2+3,∴抛物线的顶点坐标为(-2,3),∵抛物线y=ax2+bx+c向左平移2个单位,再向下平移3个单位长度得抛物线y=-(x+2)2+3,-2+2=0,3+3=1,∴平移前抛物线顶点坐标为(0,1),∴平移前抛物线为y=-x2+1,∴a=-1,b=0,c=1.故选D.【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减;本题难点在于逆运用规律求出平移前抛物线顶点坐标.6、B【分析】
【详解】∵x1,x2是关于x的一元二次方程x2+4x+a=0的两个不相等实数根,∴x1+x2=﹣4,x1x2=a.∴x1x2﹣2x1﹣2x2﹣5=x1x2﹣2(x1+x2)﹣5=a﹣2×(﹣4)﹣5=0,即a+1=0,解得,a=﹣1.故选B7、A【解析】根据一元二次方程的定义进行解答即可.【详解】①ax2+bx+c=0,当a=0时,该方程不是一元二次方程;②x2=0符合一元二次方程的定义;③符合一元二次方程的定义;④是分式方程.综上所述,其中一元二次方程的是②和③.故选A.【点睛】本题考查了一元二次方程的定义,利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.8、D【分析】根据相似图形的概念:如果两个图形形状相同,但大小不一定相等,那么这两个图形相似,直接判断即可得出答案,【详解】解:.形状不相同,不符合相似图形的定义,此选项不符合题意;.形状不相同,不符合相似图形的定义,此选项不符合题意;.形状不相同,不符合相似图形的定义,此选项不符合题意;.形状相同,但大小不同,符合相似图形的定义,此选项符合题意;故选:.【点睛】本题考查的知识点是相似图形的定义,理解掌握概念是解题的关键.9、A【分析】根据三角形内心定义即可得到答案.【详解】∵内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心,∴A正确,B、C、D均错误,故选:A.【点睛】此题考查三角形的内心,熟记定义是解题的关键.10、D【解析】试题分析:由图象可知,反比例函数图象经过(3,3),应用待定系数法可得该反比例函数关系式为,因此,当x=3时,y=3,点C与点M重合,即EC=EM,选项A错误;根据等腰直角三角形的性质,当x=3时,y=3,点C与点M重合时,EM=,当y=9时,,即EC=,所以,EC<EM,选项B错误;根据等腰直角三角形的性质,EC=,CF=,即EC·CF=,为定值,所以不论x如何变化,EC·CF的值不变,选项C错误;根据等腰直角三角形的性质,BE=x,DF=y,所以BE·DF=,为定值,所以不论y如何变化,BE·DF的值不变,选项D正确.故选D.考点:1.反比例函数的图象和性质;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.等腰直角三角形的性质;5.勾股定理.11、A【解析】根据不等式组求出a的范围,然后再根据分式方程求出a的范围,从而确定a满足条件的所有整数值,求和即可.【详解】不等式组整理得:,由不等式组至少有4个整数解,得到a+2<﹣1,解得:a<﹣3,分式方程去分母得:12﹣ax=2x+4,解得:x=,∵分式方程有整数解且a是整数∴a+2=±1、±2、±4、±8,即a=﹣1、﹣3、0、﹣4、2、﹣6、6、﹣10,又∵x=≠﹣2,∴a≠﹣6,由a<﹣3得:a=﹣10或﹣4,∴所有满足条件的a的和是﹣14,故选:A.【点睛】本题主要考查含参数的分式方程和一元一次不等式组的综合,熟练掌握分式方程和一元一次不等式组的解法,是解题的关键,特别注意,要检验分式方程的增根.12、A【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:点A(-2,6)关于原点对称的点的坐标是(2,-6),
故选:A.【点睛】本题考查了关于原点对称的点的坐标,利用关于原点对称的点的横坐标互为相反数,纵坐标互为相反数是解题关键.二、填空题(每题4分,共24分)13、0.1【分析】利用频数统计图可得,在试验中图钉针尖朝上的频率在0.1波动,然后利用频率估计概率可得图钉针尖朝上的概率.【详解】解:由统计图得,在试验中得到图钉针尖朝上的频率在0.1波动,所以可根据计图钉针尖朝上的概率为0.1.【点睛】本题考查了频数统计图用频率估计概率,解决本题的关键是正确理解题意,明确频率和概率之间的联系和区别.14、>.【解析】先求出1=,再比较即可.【详解】∵12=9<10,∴>1,故答案为>.【点睛】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.15、【分析】连接OA,根据反比例函数中k的几何意义可得,再根据等底同高的三角形的面积相等即可得出结论【详解】解:连接OA,∵反比例函数的图象经过点,∴;∵过作轴垂线,垂足是;∴AB//OC∴和等底同高;∴;故答案为:【点睛】本题考查了反比例函数比例系数的几何意义、等底同高的三角形的面积,熟练掌握反比例函数的性质是解题的关键16、1【分析】设有红球有x个,利用频率约等于概率进行计算即可.【详解】设红球有x个,根据题意得:=20%,解得:x=1,即红色球的个数为1个,故答案为:1.【点睛】本题考查了由频率估计概率的知识,解题的关键是了解大量重复实验中事件发生的频率等于事件发生的概率.17、4【解析】∵方程x²−4x+m=0有两个相等的实数根,∴△=b²−4ac=16−4m=0,解之得,m=4故本题答案为:418、-【解析】试题解析:由韦达定理可得:故答案为:点睛:一元二次方程根与系数的关系:三、解答题(共78分)19、(1)50,12;(2)5,4;(3)336.【分析】(1)先由6篇的人数及其所占百分比求得总人数,总人数减去其他篇数的人数求得m的值;(2)根据中位数和众数的定义求解;(3)用总人数乘以样本中4篇的人数所占比例即可得.【详解】解:(1)被调查的总人数为8÷16%=50人,m=50-(10+14+8+6)=12;(2)由于共有50个数据,其中位数为第25、26个数据的平均数,而第25、26个数据均为5篇,所以中位数为5篇,出现次数最多的是4篇,所以众数为4篇;(3)估计该校学生在这一周内文章阅读的篇数为4篇的人数为人.【点睛】本题考查的是扇形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.20、(1)4500元;(2)7,4000;(3)4、5、6、7、8、9、10;(4).【解析】(1)利用待定系数法将(2,6500),(4,5500)代入y=kx+b求k,b确定表达式,求当x=6时的y值即可;(2)求销售额w与x之间的函数关系式,利用二次函数的最大值问题求解;(3)分三种情况讨论假设6月份,7月份,8月份的最大销售为22500万元时,求相应的m值,再分别求出此时另外两月的总利润,通过比较作出判断.【详解】设y=kx+b,根据图象将(2,6500),(4,5500)代入得,,解得,,∴y=-500x+7500,当x=6时,y=-500×6+7500=4500元;(2)设销售额为z元,z=yp=(-500x+7500)(x+1)=-500x2+7000x+7500=-500(x-7)2+32000,∵z与x成二次函数,a=-500<0,开口向下,∴当x=7时,z有最大值,当x=7时,y=-500×7+7500=4000元.答:该产品第7个月的销售额最大,该月的销售价格是4000元/台.(3)z与x的图象如图的抛物线当y=27500时,-500(x-7)2+32000=27500,解得,x1=10,x2=4∴预计销售部符合销售要求的是4,5,6,7,8,9,10月份.(4)设总利润为W=-500x2+7000x+7500-m(x+1)=-500x2+(7000-m)x+7500-m,第一种情况:当x=6时,-500×62+(7000-m)×6+7500-m=22500,解得,m=,此时7月份的总利润为-500×72+(7000-)×7+7500-≈17714<22500,此时8月份的总利润为-500×82+(7000-)×8+7500-≈19929<22500,∴当m=时,6月份利润最大,且最大值为22500万元.第二种情况:当x=7时,-500×72+(7000-m)×7+7500-m=22500,解得,m=1187.5,此时6月份的总利润为-500×62+(7000-1187.5)×6+7500-1187.5=23187.5>22500,∴当m=1187.5不符合题意,此种情况不存在.第三种情况:当x=8时,-500×82+(7000-m)×8+7500-m=22500,解得,m=1000,此时7月份的总利润为-500×72+(7000-1000)×7+7500-1000=24000>22500,∴当m=1000不符合题意,此种情况不存在.∴当时销售利润最大值为22500万元时,此时m=.【点睛】本题考查二次函数的实际应用,最大利润问题,利用二次函数的最值性质是解决实际问题的重要途径.21、(1)∠ECO=∠OAC;(2)①OM=ON,理由见解析,②EM的值为m+m或m﹣m【分析】(1)结论:∠ECO=∠OAC.理由直角三角形斜边中线定理,三角形的中位线定理解决问题即可.(2)①只要证明△COM≌△AON(ASA),即可解决问题.②分两种情形:如图3﹣1中,当点N在CA的延长线上时,如图3﹣2中,当点N在线段AC上时,作OH⊥AC于H.分别求解即可解决问题.【详解】解:(1)结论:∠ECO=∠OAC.理由:如图1中,连接OE.∵∠BCD=90°,BE=ED,BO=OA,∵CE=ED=EB=BD,CO=OA=OB,∴∠OCA=∠A,∵BE=ED,BO=OA,∴OE∥AD,OE=AD,∴CE=EO.∴∠EOC=∠OCA=∠ECO,∴∠ECO=∠OAC.故答案为:∠OCE=∠OAC.(2)如图2中,∵OC=OA,DA=DB,∴∠A=∠OCA=∠ABD,∴∠COA=∠ADB,∵∠MON=∠ADB,∴∠AOC=∠MON,∴∠COM=∠AON,∵∠ECO=∠OAC,∴∠MCO=∠NAO,∵OC=OA,∴△COM≌△AON(ASA),∴OM=ON.②如图3﹣1中,当点N在CA的延长线上时,∵∠CAB=30°=∠OAN+∠ANO,∠AON=15°,∴∠AON=∠ANO=15°,∴OA=AN=m,∵△OCM≌△OAN,∴CM=AN=m,在Rt△BCD中,∵BC=m,∠CDB=60°,∴BD=m,∵BE=ED,∴CE=BD=m,∴EM=CM+CE=m+m.如图3﹣2中,当点N在线段AC上时,作OH⊥AC于H.∵∠AON=15°,∠CAB=30°,∴∠ONH=15°+30°=45°,∴OH=HN=m,∵AH=m,∴CM=AN=m﹣m,∵EC=m,∴EM=EC﹣CM=m﹣(m﹣m)=m﹣m,综上所述,满足条件的EM的值为m+m或m﹣m.【点睛】本题属于几何变换综合题,考查了直角三角形斜边中线定理、三角形中位线定理、全等三角形的判定和性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题.22、(1)点A的铅直高度是2019mm;(2)A,E两点的水平距离约为3529mm.【分析】(1)如图,作AG⊥EF,CH⊥AG,DM⊥EF,垂足分别为点G,H,M,利用求出AH的长,利用求出DM的长,从而求出AG的长,即点的铅直高度;(2)利用求出CH的长,再利用求出EM,从而求出A,E两点的水平距离.【详解】如图,作AG⊥EF,CH⊥AG,DM⊥EF,垂足分别为点G,H,M.(1)在Rt△ACH中,∠ACH=30°,AC=AB﹣BC=1700∴∴AH=850在Rt△DEM中,∴DM≈357∴AG=AH+CD+DM≈850+812+357=2019∴点A的铅直高度是2019mm.
(2)∵在Rt△ACH中,,∴CH≈1471∵在Rt△DEM中,,∴EM≈2058∴EG=EM+CH≈3529
∴A,E两点的水平距离约为3529mm.【点睛】本题考查了三角函数的应用,利用特殊三角函数的值求解线段长是解题的关键.23、(1);(2);(3)101.2,1.【分析】分两段,根据题意,用待定系数法求解即可;先用含m,n的式子表示出y来,再代入即可;分别对(2)中的函数化为顶点式,再依次求出各种情况下的最大值,最后值最大的即为所求.【详解】(1)当时,设,由图知可知,解得∴同理得,当时,∴销售量与第天之间的函数关系式:(2)∵∴整理得,(3)当时,∵的对称轴∴此时,在对称轴的右侧随的增大而增大∴时,取最大值,则当时∵的对称轴是∴在时,取得最大值,此时当时∵的对称轴为∴此时,在对称轴的左侧随的增大而减小∴时,取最大值,的最大值是综上,文旦销售第1天时,日销售利润最大,最大值是101.2【点睛】本题考查了一次函数和二次函数的实际应用,注意分情况进行讨论.24、(1)y=;(2)5辆这样的拖拉机要用20天才能运完【分析】(1)根据等量关系列式即可;(2)先求出一天运的数量,然后代入解析式即可.【详解】解:(1)∵xy=1200,∴y=;(2)x=12×5=60,将x=60代入y=,得y==20,答:5辆这样的拖拉机要用20天才能运完.【点睛】本题考查了反比例函数的实际应用,找出等量关系列出关系式是解题关键.25、(1)y=x﹣1;y=;(1)点P1的坐标为(,0),点P1的坐标为(﹣,0),(11,0);(3)0<x≤2【解析】(1)根据点A,B的坐标,利用待定系数法即可求出直线AB的函数表达式,利用一次函数图象上点的坐标特征可得出点C的坐标,由点C的坐标,利用待定系数法即可求出反比例函数的表达式;(1)过点C作CD⊥x轴,垂足为D点,利用勾股定理看求出OC的长,分OC=OP和CO=CP两种情况考虑:①当OP=OC时,由OC的长可得出OP的长,进而可求出点P的坐标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度房屋财产分割及共有权转让协议3篇
- 课程设计游标卡尺
- 2025年销售年终工作总结参考(三篇)
- 二零二五年度创业投资对赌协议书范本及退出机制
- 二零二五年度建筑水暖消防工程监理分包合同2篇
- 市场总监主要职责模版(2篇)
- 课程设计医疗急救
- 2025年牛津上海版高二地理下册阶段测试试卷
- 2025年人教版七年级物理上册阶段测试试卷
- 2025版顶楼物业买卖合同书3篇
- 2023年公务员体检表
- YY/T 0882-2013麻醉和呼吸设备与氧气的兼容性
- JJG 596-2012电子式交流电能表
- GB/T 5237.1-2017铝合金建筑型材第1部分:基材
- GB/T 2317.1-2000电力金具机械试验方法
- 供应商ROHs审核表
- 五大发电公司及所属电厂列表及分部精编版
- 小学数学听课记录 精选(范文20篇)
- 光伏电站设备监造与性能验收
- 10kV架空线路施工方案
- 2018江苏苏州中考英语真题解析
评论
0/150
提交评论