2023届山东省济南回民中学数学九年级第一学期期末调研试题含解析_第1页
2023届山东省济南回民中学数学九年级第一学期期末调研试题含解析_第2页
2023届山东省济南回民中学数学九年级第一学期期末调研试题含解析_第3页
2023届山东省济南回民中学数学九年级第一学期期末调研试题含解析_第4页
2023届山东省济南回民中学数学九年级第一学期期末调研试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,各正方形的边长均为1,则四个阴影三角形中,一定相似的一对是()A.①② B.①③ C.②③ D.③④2.已知反比例函数,下列结论正确的是()A.图象在第二、四象限 B.当时,函数值随的增大而增大C.图象经过点 D.图象与轴的交点为3.如图,在平面直角坐标系中,菱形ABCD的顶点A(3,0),顶点B在y轴正半轴上,顶点D在x轴负半轴上,若抛物线y=-x2-5x+c经过点B、C,则菱形ABCD的面积为()A.15 B.20 C.25 D.304.若2是关于方程x2﹣5x+c=0的一个根,则这个方程的另一个根是()A.﹣3 B.3 C.﹣6 D.65.已知函数y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c﹣4=0的根的情况是()A.有两个相等的实数根 B.有两个异号的实数根C.有两个不相等的实数根 D.没有实数根6.如图,四边形ABCD是正方形,延长BC到E,使,连接AE交CD于点F,则()A.67.5° B.65° C.55° D.45°7.如图,已知为的直径,点,在上,若,则()A. B. C. D.8.在Rt△ABC中,∠C=90°,sinA=,BC=6,则AB=()A.4 B.6 C.8 D.109.下列事件是必然事件的是()A.任意购买一张电影票,座号是“7排8号” B.射击运动员射击一次,恰好命中靶心C.抛掷一枚图钉,钉尖触地 D.13名同学中,至少2人出生的月份相同10.已知一条抛物线的表达式为,则将该抛物线先向右平移个单位长度,再向上平移个单位长度,得到的新抛物线的表达式为()A. B. C. D.11.口袋中有2个红球和1个黑球,每次摸到后放回,两次都摸到红球的概率为()A. B. C. D.12.如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO、BD,则∠OBD的度数是_____.14.反比例函数的图象在一、三象限,函数图象上有两点A(,y1,)、B(5,y2),则y1与y2,的大小关系是__________15.关于x的方程2x2-ax+1=0一个根是1,则它的另一个根为________.16.从,0,,,1.6中随机取一个数,取到无理数的概率是__________.17.如图,在⊙O内有折线DABC,点B,C在⊙O上,DA过圆心O,其中OA=8,AB=12,∠A=∠B=60°,则BC=_____.18.关于x的一元二次方程的一个根为1,则方程的另一根为______.三、解答题(共78分)19.(8分)如图,已知抛物线经过原点O,顶点为A(1,1),且与直线交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求△ABC的面积;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.20.(8分)若关于x的方程有两个相等的实数根(1)求b的值;(2)当b取正数时,求此时方程的根,21.(8分)如图,一次函数y=﹣x+2的图象与反比例函数y=﹣的图象交于A、B两点,与x轴交于D点,且C、D两点关于y轴对称.(1)求A、B两点的坐标;(2)求△ABC的面积.22.(10分)小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:朝上的点数123456出现的次数79682010(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据实验,一次实验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次”,小颖和小红的说法正确吗?为什么?(3)小颖和小红各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.23.(10分)在平面直角坐标系中有,为原点,,,将此三角形绕点顺时针旋转得到,抛物线过三点.(1)求此抛物线的解析式及顶点的坐标;(2)直线与抛物线交于两点,若,求的值;(3)抛物线的对称轴上是否存在一点使得为直角三角形.24.(10分)已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.(1)如图1,当∠CA′D=15°时,作∠A′EC的平分线EF交BC于点F.①写出旋转角α的度数;②求证:EA′+EC=EF;(2)如图2,在(1)的条件下,设P是直线A′D上的一个动点,连接PA,PF,若AB=,求线段PA+PF的最小值.(结果保留根号)25.(12分)计算:(1)sin260°﹣tan30°•cos30°+tan45°(2)cos245°+sin245°+sin254°+cos254°26.在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+ax+a(a≠0)交x轴于点A和点B(点A在点B左边),交y轴于点C,连接AC,tan∠CAO=1.(1)如图1,求抛物线的解析式;(2)如图2,D是第一象限的抛物线上一点,连接DB,将线段DB绕点D顺时针旋转90°,得到线段DE(点B与点E为对应点),点E恰好落在y轴上,求点D的坐标;(1)如图1,在(2)的条件下,过点D作x轴的垂线,垂足为H,点F在第二象限的抛物线上,连接DF交y轴于点G,连接GH,sin∠DGH=,以DF为边作正方形DFMN,P为FM上一点,连接PN,将△MPN沿PN翻折得到△TPN(点M与点T为对应点),连接DT并延长与NP的延长线交于点K,连接FK,若FK=,求cos∠KDN的值.

参考答案一、选择题(每题4分,共48分)1、A【分析】利用勾股定理,求出四个图形中阴影三角形的边长,然后判断哪两个三角形的三边成比例即可.【详解】解:由图,根据勾股定理,可得出①图中阴影三角形的边长分别为:;②图中阴影三角形的边长分别为:;③图中阴影三角形的边长分别为:;④图中阴影三角形的边长分别为:;可以得出①②两个阴影三角形的边长,所以图①②两个阴影三角形相似;故答案为:A.【点睛】本题考查相似三角形的判定,即如果两个三角形三条边对应成比例,则这两个三角形相似;本题在做题过程中还需注意,阴影三角形的边长利用勾股定理计算,有的图形需要把小正方形补全后计算比较准确.2、C【分析】根据反比例函数的性质逐条判断即可得出答案.【详解】解:A错误图像在第一、三象限B错误当时,函数值y随x的增大而减小C正确D错误反比例函数x≠0,所以与y轴无交点故选C【点睛】此题主要考查了反比例函数的性质,牢牢掌握反比例函数相关性质是解题的关键.3、B【分析】根据抛物线的解析式结合抛物线过点B、C,即可得出点C的横坐标,由菱形的性质可得出AD=AB=BC=1,再根据勾股定理可求出OB的长度,套用平行四边形的面积公式即可得出菱形ABCD的面积.【详解】解:抛物线的对称轴为,∵抛物线y=-x2-1x+c经过点B、C,且点B在y轴上,BC∥x轴,

∴点C的横坐标为-1.

∵四边形ABCD为菱形,

∴AB=BC=AD=1,

∴点D的坐标为(-2,0),OA=2.

在Rt△ABC中,AB=1,OA=2,∴OB=,∴S菱形ABCD=AD•OB=1×4=3.

故选:B.【点睛】本题考查了二次函数图象上点的坐标特征、二次函数的性质、菱形的性质以及平行四边形的面积,根据二次函数的性质、菱形的性质结合勾股定理求出AD=1、OB=4是解题的关键.4、B【分析】根据一元二次方程根与系数的关系即可得.【详解】设这个方程的另一个根为,由一元二次方程根与系数的关系得:,解得,故选:B.【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题关键.5、A【分析】根据抛物线的顶点坐标的纵坐标为4,判断方程ax2+bx+c﹣4=0的根的情况即是判断函数y=ax2+bx+c的图象与直线y=4交点的情况.【详解】∵函数的顶点的纵坐标为4,∴直线y=4与抛物线只有一个交点,∴方程ax2+bx+c﹣4=0有两个相等的实数根,故选A.【点睛】本题考查了二次函数与一元二次方程,熟练掌握一元二次方程与二次函数间的关系是解题的关键.6、A【分析】由三角形及正方形对角线相互垂直平分相等的性质进行计算求解,把各角之间关系找到即可求解.【详解】解:∵四边形ABCD是正方形,CE=CA,∴∠ACE=45°+90°=135°,∠E=22.5°,∴∠AFD=90°-22.5°=67.5°,故选A.【点睛】主要考查到正方形的性质,等腰三角形的性质和外角与内角之间的关系.这些性质要牢记才会灵活运用.7、C【分析】连接AD,根据同弧所对的圆周角相等,求∠BAD的度数,再根据直径所对的圆周角是90°,利用内角和求解.【详解】解:连接AD,则∠BAD=∠BCD=28°,∵AB是直径,∴∠ADB=90°,∴∠ABD=90°-∠BAD=90°-28°=62°.故选:C.【点睛】本题考查圆周角定理,运用圆周角定理是解决圆中角问题的重要途径,直径所对的圆周角是90°是圆中构造90°角的重要手段.8、D【详解】解:在Rt△ABC中,∠C=90°,sinA==,BC=6∴AB==10,故选D.考点:解直角三角形;9、D【分析】根据必然事件的定义即可得出答案.【详解】ABC均为随机事件,D是必然事件,故答案选择D.【点睛】本题考查的是必然事件的定义:一定会发生的事情.10、A【分析】可根据二次函数图像左加右减,上加下减的平移规律进行解答.【详解】二次函数向右平移个单位长度得,,再向上平移个单位长度得即故选A.【点睛】本题考查了二次函数的平移,熟练掌握平移规律是解题的关键.11、D【分析】根据题意画出树形图即可求出两次都摸到红球的概率,进而得出选项.【详解】解:设红球为1,黑球为2,画树形图得:由树形图可知:两次都摸到红球的概率为.故选:D.【点睛】本题考查用列表法与树状图法求随机事件的概率,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.12、A【分析】主视图:从物体正面观察所得到的图形,由此观察即可得出答案.【详解】从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为A.【点睛】本题考查三视图的知识,主视图是从物体的正面看得到的视图.二、填空题(每题4分,共24分)13、30°【解析】根据点的坐标得到OD,OC的长度,利用勾股定理求出CD的长度,由此求出∠OCD的度数;由于∠OBD和∠OCD是弧OD所对的圆周角,根据“同弧所对的圆周角相等”求出∠OBD的度数.【详解】连接CD.由题意得∠COD=90°,∴CD是⊙A的直径.∵D(0,1),C(,0),∴OD=1,OC=,∴CD==2,∴∠OCD=30°,∴∠OBD=∠OCD=30°.(同弧或等弧所对的圆周角相等)

故答案为30°.【点睛】本题考查圆周角定理以及推论,可以结合圆周角进行解答.14、【分析】根据反比例函数的性质,双曲线的两支分别位于第一、第三象限时k>0,在每一象限内y随x的增大而减小,可得答案.【详解】解:∵反比例函数的图象在一、三象限,∴,∴在每一象限内y随x的增大而减小,∵,∴;故答案为:.【点睛】此题主要考查了反比例函数的性质,关键是掌握反比例函数(k≠0),当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小.15、.【详解】试题分析:设方程的另一个根为m,根据根与系数的关系得到1•m=,解得m=.考点:根与系数的关系.16、【分析】由题意可得共有5种等可能的结果,其中无理数有:,共2种情况,则可利用概率公式求解.【详解】∵共有5种等可能的结果,无理数有:,共2种情况,∴取到无理数的概率是:.故答案为:.【点睛】此题考查了概率公式的应用与无理数的定义.此题比较简单,注意用到的知识点为:概率=所求情况数与总情况数之比.17、1【分析】作OE⊥BC于E,连接OB,根据∠A、∠B的度数易证得△ABD是等边三角形,由此可求出OD、BD的长,设垂足为E,在Rt△ODE中,根据OD的长及∠ODE的度数易求得DE的长,进而可求出BE的长,由垂径定理知BC=2BE即可得出答案.【详解】作OE⊥BC于E,连接OB.∵∠A=∠B=60°,∴∠ADB=60°,∴△ADB为等边三角形,∴BD=AD=AB=12,∵OA=8,∴OD=4,又∵∠ADB=60°,∴DE=OD=2,∴BE=12﹣2=10,由垂径定理得BC=2BE=1故答案为:1.【点睛】本题考查了圆中的弦长计算,熟练掌握垂径定理,作出辅助线构造直角三角形是解题的关键.18、-1【详解】设一元二次方程x2+2x+a=0的一个根x1=1,另一根为x2,则,x1+x2=-=-2,解得,x2=-1.故答案为-1.三、解答题(共78分)19、(1)y=﹣(x﹣1)2+1,C(﹣1,﹣3);(2)3;(3)存在满足条件的N点,其坐标为(,0)或(,0)或(﹣1,0)或(5,0)【分析】(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C点坐标;(2)设直线AC的解析式为y=kx+b,与x轴交于D,得到y=2x−1,求得BD于是得到结论;(3)设出N点坐标,可表示出M点坐标,从而可表示出MN、ON的长度,当△MON和△ABC相似时,利用三角形相似的性质可得或,可求得N点的坐标.【详解】(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a(x﹣1)2+1,又抛物线过原点,∴0=a(0﹣1)2+1,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+1,即y=﹣x2+2x,联立抛物线和直线解析式可得,解得或,∴B(2,0),C(﹣1,﹣3);(2)设直线AC的解析式为y=kx+b,与x轴交于D,把A(1,1),C(﹣1,﹣3)的坐标代入得,解得:,∴y=2x﹣1,当y=0,即2x﹣1=0,解得:x=,∴D(,0),∴BD=2﹣=,∴△ABC的面积=S△ABD+S△BCD=××1+××3=3;(3)假设存在满足条件的点N,设N(x,0),则M(x,﹣x2+2x),∴ON=|x|,MN=|﹣x2+2x|,由(2)知,AB=,BC=3,∵MN⊥x轴于点N,∴∠ABC=∠MNO=90°,∴当△ABC和△MNO相似时,有或,①当时,∴,即|x||﹣x+2|=|x|,∵当x=0时M、O、N不能构成三角形,∴x≠0,∴|﹣x+2|=,∴﹣x+2=±,解得x=或x=,此时N点坐标为(,0)或(,0);②当或时,∴,即|x||﹣x+2|=3|x|,∴|﹣x+2|=3,∴﹣x+2=±3,解得x=5或x=﹣1,此时N点坐标为(﹣1,0)或(5,0),综上可知存在满足条件的N点,其坐标为(,0)或(,0)或(﹣1,0)或(5,0).【点睛】本题为二次函数的综合应用,涉及知识点有待定系数法、图象的交点问题、直角三角形的判定、勾股定理及逆定理、相似三角形的性质及分类讨论等.在(1)中注意顶点式的运用,在(3)中设出N、M的坐标,利用相似三角形的性质得到关于坐标的方程是解题的关键,注意相似三角形点的对应.本题考查知识点较多,综合性较强,难度适中.20、(1)b=2或b=;(2)x1=x2=2;【分析】(1)根据根的判别式即可求出答案.(2)由(1)可知b=2,根据一元二次方程的解法即可求出答案.【详解】解:(1)由题意可知:△=(b+2)2-4(6-b)=0,∴解得:b=2或b=.(2)当b=2时,此时x2-4x+4=0,∴,∴x1=x2=2;【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.21、(1)A点坐标为(﹣1,3),B点坐标为(3,﹣1);(2)S△ABC=1.【解析】试题分析:(1)根据反比例函数与一次函数的交点问题得到方程组,然后解方程组即可得到A、B两点的坐标;(2)先利用x轴上点的坐标特征确定D点坐标,再利用关于y轴对称的点的坐标特征得到C点坐标,然后利用S△ABC=S△ACD+S△BCD进行计算.试题解析:(1)根据题意得,解方程组得或,所以A点坐标为(﹣1,3),B点坐标为(3,﹣1);(2)把y=0代入y=﹣x+2得﹣x+2=0,解得x=2,所以D点坐标为(2,0),因为C、D两点关于y轴对称,所以C点坐标为(﹣2,0),所以S△ABC=S△ACD+S△BCD=×(2+2)×3+×(2+2)×1=1.考点:反比例函数与一次函数的交点问题.22、(1)0.1;(2)小颖的说法是错误的,理由见解析(3)列表见详解;【分析】(1)根据频率等于频数除以总数,即可分别求出“3点朝上”的频率和“5点朝上”的频率.(2)频率不等于概率,只能估算概率,故小颖的说法不对,事件发生具有随机性,故得知小红的说法也不对.(3)列表,找出点数之和是3的倍数的结果,除以总的结果,即可解决.【详解】解:(1)“3点朝上”的频率:6÷60=0.1“5点朝上”的频率:20÷60=.(2)小颖的说法是错误的,因为“5点朝上”的频率最大并不能说明5点朝上的概率最大,频率不等于概率;小红的说法是错误的,因为事件发生具有随机性,故“点朝上”的次数不一定是100次.(3)列表如下:共有36种情况,点数之和为3的倍数的情况有12种.故P(点数之和为3的倍数)==.【点睛】本题主要考查了频率的公式、频率与概率的关系以及列表法和树状图法求概率,能够熟练其概念以及准确的列表是解决本题的关键.23、(1);点;(2);(3)存在,Q1(1,-1),Q2(1,2),Q3(1,4),Q4(1,-5).【分析】(1)用待定系数法可求抛物线的解析式,进行配成顶点式即可写出顶点坐标;(2)将直线与抛物线联立,通过根与系数关系得到,,再通过得出,通过变形得出代入即可求出的值;(3)分:,,三种情况分别利用勾股定理进行讨论即可.【详解】(1)∵,,∵绕点顺时针旋转,得到,∴点的坐标为:,将点A,B代入抛物线中得解得∴此抛物线的解析式为:∵;∴点(2)直线:与抛物线的对称轴交点的坐标为,交抛物线于,,由得:∴,∵,∴∴∴∴∴(3)存在,或,,∴设点,若,则即∴或若,则即∴若,则即∴即Q1(1,-1),Q2(1,2),Q3(1,4),Q4(1,-5).【点睛】本题主要考查二次函数与几何综合,掌握二次函数的图象和性质,分情况讨论是解题的关键.24、(1)①105°,②见解析;(2)【分析】(1)①解直角三角形求出∠A′CD即可解决问题,②连接A′F,设EF交CA′于点O,在EF时截取EM=EC,连接CM.首先证明△CFA′是等边三角形,再证明△FCM≌△A′CE(SAS),即可解决问题.(2)如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.证明△A′EF≌△A′EB′,推出EF=EB′,推出B′,F关于A′E对称,推出PF=PB′,推出PA+PF=PA+PB′≥AB′,求出AB′即可解决问题.【详解】①解:由∠CA′D=15°,可知∠A′CD=90°-15°=75°,所以∠A′CA=180°-75°=105°即旋转角α为105°.②证明:连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM.∵∠CED=∠A′CE+∠CA′E=45°+15°=60°,∴∠CEA′=120°,∵FE平分∠CEA′,∴∠CEF=∠FEA′=60°,∵∠FCO=180°﹣45°﹣75°=60°,∴∠FCO=∠A′EO,∵∠FOC=∠A′OE,∴△FOC∽△A′OE,∴=,∴=,∵∠COE=∠FOA′,∴△COE∽△FOA′,∴∠FA′O=∠OEC=60°,∴△A′CF是等边三角形,∴CF=CA′=A′F,∵EM=EC,∠CEM=60°,∴△CEM是等边三角形,∠ECM=60°,CM=CE,∵∠FCA′=∠MCE=60°,∴∠FCM=∠A′CE,∴△FCM≌△A′CE(SAS),∴FM=A′E,∴CE+A′E=EM+FM=EF.(2)解:如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.由②可知,∠EA′F=′EA′B′=75°,A′E=A′E,A′F=A′B′,∴△A′EF≌△A′EB′,∴EF=EB′,∴B′,F关于A′E对称,∴PF=PB′,∴PA+PF=PA+PB′≥AB′,在Rt△CB′M中,CB′=BC=AB=2,∠MCB′=30°,∴B′M=CB′=1,CM=,∴AB′===.∴PA+PF的最小值为.【点睛】本题属于四边形综合题,考查旋转变换相关,全等三角形的判定和性质,相似三角形的判定和性质以及三角形的三边关系等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题,难度较大.25、(1);(2)2.【解析】根据特殊角的锐角三角函数的值即可求出答案.【详解】(1)原式=()2﹣×+1=﹣+1=,(2)原式=(cos²45°+sin²45°)+(sin²54°+cos²54°)=1+1=2【点睛】本题考查了锐角三角函数的定义,解题的关键是熟练运用特殊角的锐角三角函数的定义.26、(1)y=﹣x2+x+1;(2)D的坐标为(1,1);(1)【分析】(1)通过抛物线y=先求出点A的坐标,推出OA的长度,再由tan∠CAO=1求出OC的长度,点C的坐标,代入原解析式即可求出结论;(2)如图2,过点D分别作x轴和y轴的垂线,垂足分别为W和Z,证△DZE≌△DWB,得到DZ=DW,由此可知点D的横纵坐标相等,设出点D坐标,代入抛物线解析式即可求出点D坐标;(1)如图1,连接CD,分别过点C,H作F的垂线,垂足分别为Q,I,过点F作DC的垂线,交DC的延长线于点U,先求出点G坐标,求出直线DG解析式,再求出点F的坐标,即可求出正方形FMND的边长,再求出其对角线FN的长度,最后证点F,K,M,N,D共圆,推出∠KDN=∠KFN,求出∠KFN的余弦值即可.【详解】解:(1)在抛物线y=中,当y=0时,x1=﹣1,x2=4,∴A(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论