版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列关于x的一元二次方程没有实数根的是()A. B. C. D.2.如图,某数学兴趣小组将长为,宽为的矩形铁丝框变形为以为圆心,为半径的扇形(忽略铁丝的粗细),则所得扇形的面积为()A. B. C. D.3.方程x2=4的解是()A.x=2B.x=﹣2C.x1=1,x2=4D.x1=2,x2=﹣24.如图,A、B是曲线上的点,经过A、B两点向x轴、y轴作垂线段,若S阴影=1则S1+S2=()A.4 B.5 C.6 D.85.已知M(1,2),则M关于原点的对称点N落在()A.的图象上 B.的图象上 C.的图象上 D.的图象上6.下列图形中,主视图为①的是()A. B. C. D.7.下列图形中,不是中心对称图形的是()A. B. C. D.8.方程x2=x的解是()A.x=1 B.x=0 C.x1=1,x2=0 D.x1=﹣1,x2=09.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和B,与y轴的正半轴交于点C,下列结论:①abc>0;②4a﹣2b+c>0;③2a﹣b>0,其中正确的个数为()A.0个 B.1个 C.2个 D.3个10.下列二次根式中,与是同类二次根式的是A. B. C. D.11.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V()的反比例函数,其图象如图所示,当气球内的气压大于120kPa时,气球将会爆炸,为了安全起见,气球的体积应()A.不小于 B.大于 C.不小于 D.小于12.毕业前期,某班的全体学生互赠贺卡,共赠贺卡1980张.设某班共有名学生,那么所列方程为()A. B.C. D.二、填空题(每题4分,共24分)13.已知△ABC的内角满足=__________度.14.一支反比例函数,若,则y的取值范围是_____.15.一个正多边形的每个外角都等于,那么这个正多边形的中心角为______.16.正五边形的中心角的度数是_____.17.分解因式:.18.在平面直角坐标系中,抛物线y=﹣(x﹣1)2+2的顶点坐标是_____.三、解答题(共78分)19.(8分)如图,已知二次函数的图象经过点,.(1)求的值;(2)直接写出不等式的解.20.(8分)如图,在平面直角坐标系中,抛物线交轴、两点(在的左侧),且,,与轴交于,抛物线的顶点坐标为.(1)求、两点的坐标;(2)求抛物线的解析式;(3)过点作直线轴,交轴于点,点是抛物线上、两点间的一个动点(点不与、两点重合),、与直线分别交于点、,当点运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.21.(8分)阅读下面材料:学习函数知识后,对于一些特殊的不等式,我们可以借助函数图象来求出它的解集,例如求不等式x﹣3>的解集,我们可以在同一坐标系中,画出直线y1=x﹣3与函数y2=的图象(如图1),观察图象可知:它们交于点A(﹣1,﹣1),B(1,1).当﹣1<x<0,或x>1时,y1>y2,即不等式x﹣3>的解集为﹣1<x<0,或x>1.小东根据学习以上知识的经验,对求不等式x3+3x2﹣x﹣3>0的解集进行了探究.下面是小东的探究过程,请补充完整:(1)将不等式按条件进行转化:当x=0时,原不等式不成立;x>0时,原不等式转化为x2+3x﹣1>;当x<0时,原不等式转化为______;(2)构造函数,画出图象:设y3=x2+3x﹣1,y1=,在同一坐标系(图2)中分别画出这两个函数的图象.(3)借助图象,写出解集:观察所画两个函数的图象,确定两个函数图象交点的横坐标,结合(1)的讨论结果,可知:不等式x3+3x2﹣x﹣3>0的解集为______.22.(10分)“铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2)专家建议:从安全的角度考虑,实际运行时速要比设计时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加11023.(10分)计算:2cos45°﹣tan60°+sin30°﹣tan45°24.(10分)如图,菱形ABCD的对角线AC,BD相交于点O,分别延长OA,OC到点E,F,使AE=CF,依次连接B,F,D,E各点.(1)求证:△BAE≌△BCF;(2)若∠ABC=50°,则当∠EBA=°时,四边形BFDE是正方形.25.(12分)某校要求九年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解九年级学生参加球类活动的整体情况,现以九年级2班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:九年级2班参加球类活动人数统计表项目篮球足球乒乓球排球羽毛球人数a6486根据图中提供的信息,解答下列问题:(1)a=,b=;(2)该校九年级学生共有600人,则该年级参加足球活动的人数约人;(3)该班参加乒乓球活动的4位同学中,有2位男同学(A,B)和2位女同学(C,D),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.26.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.(1)若某天该商品每件降价3元,当天可获利多少元?(2)设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?
参考答案一、选择题(每题4分,共48分)1、D【解析】利用一元二次方程的根的判别式逐项判断即可.【详解】一元二次方程的根的判别式为,逐项判断如下:A、,方程有两个不相等的实数根,不符题意B、,方程有两个相等的实数根,符合题意C、,方程有两个不相等的实数根,不符题意D、,方程没有实数根,符合题意故选:D.【点睛】本题考查了一元二次方程的根的判别式,对于一般形式有:(1)当时,方程有两个不相等的实数根;(2)当时,方程有两个相等的实数根;(3)当时,方程没有实数根.2、B【分析】根据已知条件可得弧BD的弧长为6,然后利用扇形的面积公式:计算即可.【详解】解:∵矩形的长为6,宽为3,
∴AB=CD=6,AD=BC=3,
∴弧BD的长=18-12=6,故选:B.【点睛】此题考查了扇形的面积公式,解题的关键是:熟记扇形的面积公式3、D【解析】x2=4,x=±2.故选D.点睛:本题利用方程左右两边直接开平方求解.4、D【分析】B是曲线上的点,经过A、B两点向x轴、y轴作垂线段围成的矩形面积都是5,从而求出S1和S2的值即可【详解】∵A、B是曲线上的点,经过A、B两点向x轴、y轴作垂线段围成的矩形面积都是5,,∵S阴影=1,∴S1=S2=4,即S1+S2=8,故选D【点睛】本题主要考查反比例函数上的点向坐标轴作垂线围成的矩形面积问题,难度不大5、A【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数得出N的坐标,再根据各函数关系式进行判断即可.【详解】点M(1,2)关于原点对称的点N的坐标是(-1,-2),∴当x=-1时,对于选项A,y=2×(-1)=-2,满足条件,故选项A正确;对于选项B,y=(-1)2=1≠-2故选项B错误;对于选项C,y=2×(-1)2=2≠-2故选项C错误;对于选项D,y=-1+2=1≠-2故选项D错误.故选A.【点睛】本题考查了关于原点对称的点的坐标,以及函数图象上点的坐标特征,熟记关于原点对称的点的横坐标与纵坐标都互为相反数是解题的关键.6、B【解析】分析:主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.详解:A、主视图是等腰梯形,故此选项错误;B、主视图是长方形,故此选项正确;C、主视图是等腰梯形,故此选项错误;D、主视图是三角形,故此选项错误;故选B.点睛:此题主要考查了简单几何体的主视图,关键是掌握主视图所看的位置.7、A【详解】解:根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A、不是中心对称图形,故本选项正确;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误.故选A.8、C【解析】试题解析:x2-x=0,x(x-1)=0,x=0或x-1=0,所以x1=0,x2=1.故选C.考点:解一元二次方程-因式分解法.9、C【分析】由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,进而判断①;根据x=﹣2时,y>1可判断②;根据对称轴x=﹣1求出2a与b的关系,进而判断③.【详解】①由抛物线开口向下知a<1,∵对称轴位于y轴的左侧,∴a、b同号,即ab>1.∵抛物线与y轴交于正半轴,∴c>1,∴abc>1;故①正确;②如图,当x=﹣2时,y>1,则4a﹣2b+c>1,故②正确;③∵对称轴为x=﹣>﹣1,∴2a<b,即2a﹣b<1,故③错误;故选:C.【点睛】本题主要考查二次函数的图象和性质,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系.10、C【分析】根据同类二次根式的定义即可判断.【详解】A.=,不符合题意;B.,不符合题意;C.=,符合题意;D.=,不符合题意;故选C.【点睛】此题主要考查同类二次根式的识别,解题的关键是熟知二次根式的性质进行化简.11、C【解析】由题意设设,把(1.6,60)代入得到k=96,推出,当P=120时,,由此即可判断.【详解】因为气球内气体的气压p(kPa)是气体体积V()的反比例函数,所以可设,由题图可知,当时,,所以,所以.为了安全起见,气球内的气压应不大于120kPa,即,所以.故选C.【点睛】此题考查反比例函数的应用,解题关键在于把已知点代入解析式.12、D【分析】根据题意得:每人要赠送(x-1)张贺卡,有x个人,然后根据题意可列出方程:(x-1)x=1.【详解】解:根据题意得:每人要赠送(x-1)张贺卡,有x个人,
∴全班共送:(x-1)x=1,
故选:D.【点睛】此题主要考查了由实际问题抽象出一元二次方程,本题要注意读清题意,弄清楚每人要赠送(x-1)张贺卡,有x个人是解决问题的关键.二、填空题(每题4分,共24分)13、75【解析】由题意得:,,∴tanA=,cosB=,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=75°,故答案为75.14、y<-1【分析】根据函数解析式可知当x>0时,y随x的增大而增大,求出当x=1时对应的y值即可求出y的取值范围.【详解】解:∵反比例函数,-4<0,∴当x>0时,y随x的增大而增大,当x=1时,y=-1,∴当,则y的取值范围是y<-1,故答案为:y<-1.【点睛】本题考查了根据反比例函数自变量的取值范围,确定函数值的取值范围,解题的关键是熟知反比例函数的增减性.15、60°【分析】根据题意首先由多边形外角和定理求出正多边形的边数n,再由正多边形的中心角=,即可得出结果.【详解】解:正多边形的边数为,故这个正多边形的中心角为.故答案为:60°.【点睛】本题考查正多边形的性质和多边形外角和定理以及正多边形的中心角的计算方法,熟练掌握正多边形的性质,并根据题意求出正多边形的边数是解决问题的关键.16、72°.【分析】根据正多边形的圆心角定义可知:正n边形的圆中心角为,则代入求解即可.【详解】解:正五边形的中心角为:.故答案为72°.【点睛】此题考查了正多边形的中心角的知识.题目比较简单,注意熟记定义.17、.【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式后继续应用平方差公式分解即可:.考点:提公因式法和应用公式法因式分解.18、(1,2).【分析】根据题目中抛物线的解析式,可以直接写出该抛物线的顶点坐标.【详解】解:∵抛物线y=﹣(x﹣1)2+2,∴该抛物线的顶点坐标为(1,2),故答案为:(1,2).【点睛】本题主要考查抛物线的顶点坐标,掌握抛物线的顶点坐标的形式是解题的关键.三、解答题(共78分)19、(1),;(2)【解析】(1)将已知两点代入抛物线解析式求出b与c的值即可;(2)根据图象及抛物线与x轴的交点,得出不等式的解集即可.【详解】(1)将,代入抛物线解析式得解得,(2)由(1)知抛物线解析式为:,对称轴为,所以抛物线与x轴的另一交点坐标为(2,0)由图象得:不等式的解为【点睛】本题考查待定系数法求二次函数解析式,以及二次函数与不等式,熟练掌握待定系数法是解题关键.20、(1)点坐标,点坐标;(2);(3)是定值,定值为8【分析】(1)由OA、OB的长可得A、B两点坐标;(2)结合题意可设抛物线的解析式为,将点C坐标代入求解即可;(3)过点作轴交轴于,设,可用含t的代数式表示出,,的长,利用,的性质可得EF、EG的长,相加可得结论.【详解】(1)由抛物线交轴于、两点(在的左侧),且,,得点坐标,点坐标;(2)设抛物线的解析式为,把点坐标代入函数解析式,得,解得,抛物线的解析式为;(3)(或是定值),理由如下:过点作轴交轴于,如图设,则,,,∵,∴,∴,∴又∵,∴,∴,∴∴【点睛】本题考查了抛物线与三角形的综合,涉及的知识点主要有抛物线的解析式、相似三角形的判定和性质,灵活利用点坐标表示线段长是解题的关键.21、(2)x2+3x﹣2<;(2)画图见解析;(3)﹣3<x<﹣2或x>2.【分析】(2)根据不等式的基本性质,不等式的两边同时除以一个负数,不等号的方向发生改变,先在不等式的两边同时除以x,在移项即可;(2)根据列表,描点,连线的步骤画出y3=x2+3x﹣2与y2=的图象即可;(3)观察函数图象即可确定交点坐标,再根据(2)中的变形观察图象即可.【详解】(2)由题意得:当x<0时,x2+3x﹣2-<0,∴x2+3x﹣2<故答案为:x2+3x﹣2<;(2)列表:x-2-3-2-2.5-202y3=x2+3x﹣23-2-3-3.25-3-23x-3-2-2223y2=-2-2.5-332.52描点、连线,画出y3=x2+3x﹣2与y2=的图象如图所示:(3)由(2)可得:不等式x3+3x2﹣x﹣3>0当x>0时,可转化为x2+3x﹣2>;当x<0时,可转化为x2+3x﹣2<,由图象可得:不等式x3+3x2﹣x﹣3>0的解集为:﹣3<x<﹣2或x>2;故答案为:﹣3<x<﹣2或x>2.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、反比例函数的图象和性质,此类题目通常通过画出函数图象,通过图象的性质求解.22、(2)2600;(2)2.【分析】(2)利用“从重庆到上海比原铁路全程缩短了32千米,列车设计运行时速比原铁路设计运行时速提高了l2千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用26小时”,分别得出等式组成方程组求出即可;(2)根据题意得出:(80+120)(1-m%)(8+1【详解】试题解析:(2)设原时速为xkm/h,通车后里程为ykm,则有:8(120+x)=y(8+16)x=320+y解得:x=80y=1600答:渝利铁路通车后,重庆到上海的列车设计运行里程是2600千米;(2)由题意可得出:(80+120)(1-m%)(8+1解得:m1=20,答:m的值为2.考点:2.一元二次方程的应用;二元一次方程组的应用.23、-【分析】将各特殊角的三角函数值代入即可得出答案.【详解】解:原式=2×﹣+﹣×1=-【点睛】此题考查特殊角的三角函数值,属于基础题,熟练记忆一些特殊角的三角函数值是关键.24、(1)证明见试题解析;(2)1.【分析】(1)先证∠BAE=∠BCF,又由BA=BC,AE=CF,得到△BAE≌△BCF;(2)由已知可得四边形BFDE对角线互相垂直平分,只要∠EBF=90°即得四边形BFDE是正方形,由△BAE≌△BCF可知∠EBA=∠FBC,又由∠ABC=50°,可得∠EBA+∠FBC=40°,于是∠EBA=×40°=1°.【详解】解:(1)∵菱形ABCD的对角线AC,BD相交于点O,∴AB=BC,∠BAC=∠BCA,∴∠BAE=∠BCF,在△BAE与△BCF中,∵BA=BC,∠BAE=∠BCF,AE=CF,∴△BAE≌△BCF(SAS);(2)∵四边形BFDE对角线互相垂直平分,∴只要∠EBF=90°即得四边形BFDE是正方形,∵△BAE≌△BCF,∴∠EBA=∠FBC,又∵∠ABC=50°,∴∠EBA+∠FBC=40°,∴∠EBA=×40°=1°.故答案为1.【点睛】本题考查菱形的性质;全等三角形的判定与性质;正方形的判定.25、(1)16,20;(2)90;(3)【分析】(1)用参加足球的人数除以它所占的百分比得到调查的总人数,然后计算参加篮球的人数和参加排球人数的百分比得到a、b的值;(2)用600乘以样本中参加足球人数的百分比即可;(3)画树状图展示所有12种等可能的结果,找出选出一男一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度大理石石材行业知识产权保护合同12篇
- 2024年高风险项目利息支付借款协议3篇
- 2024蔬菜种子研发与推广合作协议范本3篇
- 2024版维修改造施工合同
- 二零二五年度高压开关设备采购及调试合同
- 二零二五年电力公司运维检修人员劳动合同范本3篇
- 2025年度核电站设备安装施工合同协议3篇
- 二零二五年度医疗设备租赁与维修一体化服务合同3篇
- 2025年度新型电子商务平台安全协议应用指南合同3篇
- 2024聘用至退休合同续签书:医疗行业专家续聘6篇
- 第二章 运营管理战略
- 《三本白皮书》全文内容及应知应会知识点
- 专题14 思想方法专题:线段与角计算中的思想方法压轴题四种模型全攻略(解析版)
- 医院外来器械及植入物管理制度(4篇)
- 图像识别领域自适应技术-洞察分析
- 港口与港口工程概论
- 《念珠菌感染的治疗》课件
- 门店装修设计手册
- 新概念英语第二册考评试卷含答案(第49-56课)
- 商业伦理与企业社会责任(山东财经大学)智慧树知到期末考试答案章节答案2024年山东财经大学
- 【奥运会奖牌榜预测建模实证探析12000字(论文)】
评论
0/150
提交评论