版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,在Rt△ABC中,∠BAC=90º,AH是高,AM是中线,那么在结论①∠B=∠BAM,②∠B=∠MAH,③∠B=∠CAH中错误的个数有()A.0个 B.1个 C.2个 D.3个2.若,且,则的值是()A.4 B.2 C.20 D.143.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是()A. B. C. D.4.如图,∠1=∠2,要使△ABC∽△ADE,只需要添加一个条件即可,这个条件不可能是()A.∠B=∠D B.∠C=∠E C. D.5.在比例尺为1:1000000的地图上量得A,B两地的距离是20cm,那么A、B两地的实际距离是()A.2000000cm B.2000m C.200km D.2000km6.如图,已知二次函数的图象与轴交于点(-1,0),与轴的交点在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线,下列结论不正确的是()A. B. C. D.7.下列立体图形中,主视图是三角形的是(
).A. B. C. D.8.如图,边长为的正六边形内接于,则扇形(图中阴影部分)的面积为()A. B. C. D.9.如图所示的几何体的主视图为()A. B. C. D.10.如图,四边形内接于⊙,.若⊙的半径为2,则的长为()A. B.4 C. D.3二、填空题(每小题3分,共24分)11.关于x的一元二次方程x2+nx﹣12=0的一个解为x=3,则n=_____.12.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为_____.13.抛物线y=3(x﹣2)2+5的顶点坐标是_____.14.如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE//BC,EF//AB,且AD:DB=3:5,那么CF:CB等于__________.15.如图,一组平行横格线,其相邻横格线间的距离都相等,已知点A、B、C、D、O都在横格线上,且线段AD,BC交于点O,则AB:CD等于______.16.如图,点G为△ABC的重心,GE∥AC,若DE=2,则DC=_____.17.如图,在平面直角坐标系中,和是以坐标原点为位似中心的位似图形,且点B(3,1),,(6,2),若点(5,6),则点的坐标为________.18.圆弧形蔬菜大棚的剖面如图,已知AB=16m,半径OA=10m,OC⊥AB,则中柱CD的高度为_________m.三、解答题(共66分)19.(10分)解方程:.20.(6分)已知,如图,在矩形ABCD中,对角线AC与BD相交于点O,过点C作BD的平行线,过点D作AC的平行线,两线交于点P.①求证:四边形CODP是菱形.②若AD=6,AC=10,求四边形CODP的面积.21.(6分)如图,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.(1)求证:∠HEA=∠CGF;(2)当AH=DG时,求证:菱形EFGH为正方形.22.(8分)如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上一点,且BD=BA,求tan∠ADC的值.23.(8分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠B=60°.(1)求∠ADC的度数;(2)求证:AE是⊙O的切线.24.(8分)已知矩形中,,,点、分别在边、上,将四边形沿直线翻折,点、的对称点分别记为、.(1)当时,若点恰好落在线段上,求的长;(2)设,若翻折后存在点落在线段上,则的取值范围是______.25.(10分)如图所示,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆O,分别与BC、AB相交于点D、E,连接AD,已知∠CAD=∠B.(1)求证:AD是⊙O的切线;(2)若∠B=30°,CD=,求劣弧BD的长;(3)若AC=2,BD=3,求AE的长.26.(10分)在平面直角坐标系中,已知P(,),R(,)两点,且,,若过点P作轴的平行线,过点R作轴的平行线,两平行线交于一点S,连接PR,则称△PRS为点P,R,S的“坐标轴三角形”.若过点R作轴的平行线,过点P作轴的平行线,两平行线交于一点,连接PR,则称△RP为点R,P,的“坐标轴三角形”.右图为点P,R,S的“坐标轴三角形”的示意图.(1)已知点A(0,4),点B(3,0),若△ABC是点A,B,C的“坐标轴三角形”,则点C的坐标为;(2)已知点D(2,1),点E(e,4),若点D,E,F的“坐标轴三角形”的面积为3,求e的值.(3)若的半径为,点M(,4),若在上存在一点N,使得点N,M,G的“坐标轴三角形”为等腰三角形,求的取值范围.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据直角三角形斜边上的中线性质和等腰三角形的性质得出∠B=∠BAM,根据已知条件判断∠B=∠MAH不一定成立;根据三角形的内角和定理及余角的性质得出∠B=∠CAH.【详解】①∵在Rt△ABC中,∠BAC=90°,AH是高,AM是中线,∴AM=BM,∴∠B=∠BAM,①正确;②∵∠B=∠BAM,不能判定AM平分∠BAH,∴∠B=∠MAH不一定成立,②错误;③∵∠BAC=90°,AH是高,∴∠B+∠BAH=90°,∠CAH+∠BAH=90°,∴∠B=∠CAH,③正确.故选:B.【点睛】本题主要考查对直角三角形斜边上的中线性质,三角形的内角和定理,等腰三角形的性质等知识点的理解和掌握,能根据这些性质进行推理是解此题的关键.2、A【分析】根据,且,得到,即可求解.【详解】解:∵,∴,∵,∴,∴,故选:A.【点睛】本题考查比例的性质,掌握比例的性质是解题的关键.3、D【解析】试题分析:根据三视图中,从左边看得到的图形是左视图,因此从左边看第一层是两个小正方形,第二层左边一个小正方形,故选D考点:简单组合体的三视图4、D【分析】先求出∠DAE=∠BAC,再根据相似三角形的判定方法分析判断即可.【详解】∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,∴∠DAE=∠BAC,A、添加∠B=∠D可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;B、添加∠C=∠E可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;C、添加可利用两边及其夹角法:两组边对应成比例且夹角相等的两个三角形相似,故此选项不合题意;D、添加不能证明△ABC∽△ADE,故此选项符合题意;故选:D.【点睛】本题考查相似三角形的判定,解题的关键是掌握相似三角形判定方法:两角法、两边及其夹角法、三边法、平行线法.5、C【分析】比例尺=图上距离:实际距离,根据比例尺关系可直接得出A、B两地的实际距离.【详解】根据比例尺=图上距离:实际距离,得A、B两地的实际距离为20×1000000=20000000(cm),20000000cm=200km.故A、B两地的实际距离是200km.故选:C.【点睛】本题考查了线段的比,能够根据比例尺正确进行计算,注意单位的转化.6、D【分析】根据二次函数的图象和性质、各项系数结合图象进行解答.【详解】∵(-1,0),对称轴为∴二次函数与x轴的另一个交点为将代入中,故A正确将代入中②①∴∵二次函数与轴的交点在(0,-2)和(0,-1)之间(不包括这两点)∴∴∴,故B正确;∵二次函数与轴的交点在(0,-2)和(0,-1)之间(不包括这两点)∴抛物线顶点纵坐标∵抛物线开口向上∴∴,故C正确∵二次函数与轴的交点在(0,-2)和(0,-1)之间(不包括这两点)∴将代入中①②∴∴,故D错误,符合题意故答案为:D.【点睛】本题主要考查了二次函数的图象与函数解析式的关系,可以根据各项系数结合图象进行解答.7、B【分析】根据从正面看得到的图形是主视图,可得图形的主视图.【详解】A、C、D主视图是矩形,故A、C、D不符合题意;B、主视图是三角形,故B正确;故选B.【点睛】本题考查了简单几何体的三视图,圆锥的主视图是三角形.8、B【分析】根据已知条件可得出,圆的半径为3,再根据扇形的面积公式()求解即可.【详解】解:正六边形内接于,,,是等边三角形,,扇形的面积,故选:.【点睛】本题考查的知识点求扇形的面积,熟记面积公式并通过题目找出圆心角的度数与圆的半径是解题的关键9、B【分析】根据三视图的定义判断即可.【详解】解:所给几何体是由两个长方体上下放置组合而成,所以其主视图也是上下两个长方形组合而成,且上下两个长方形的宽的长度相同.故选B.【点睛】本题考查了三视图知识.10、A【分析】圆内接四边形的对角互补,可得∠A,圆周角定理可得∠BOD,再利用等腰三角形三线合一、含有30°直角三角形的性质求解.【详解】连接OB、OD,过点O作OE⊥BD于点E,∵∠BOD=120°,∠BOD+∠A=180°,∴∠A=60°,∠BOD=2∠A=120°,∵OB=OD,OE⊥BD,∴∠EOD=∠BOD=60°,BD=2ED,∵OD=2,∴OE=1,ED=,∴BD=2,故选A.【点睛】本题考查圆内接四边形的对角互补、圆周角定理、等腰三角形的性质,熟悉“三线合一”是解答的关键.二、填空题(每小题3分,共24分)11、1【分析】根据一元二次方程的解的定义,把x=3代入x2+nx﹣12=0中可得到关于n的方程,然后解此方程即可.【详解】把x=3代入x2+nx﹣12=0,得9+3n﹣12=0,解得n=1.故答案是:1.【点睛】本题考查一元二次方程解得概念,使方程左右两边相等的未知数的值叫做方程的解.12、【解析】解:∵弦CD∥AB,∴S△ACD=S△OCD,∴S阴影=S扇形COD==.故答案为.13、(2,5).【解析】试题分析:由于抛物线y=a(x﹣h)2+k的顶点坐标为(h,k),由此即可求解.解:∵抛物线y=3(x﹣2)2+5,∴顶点坐标为:(2,5).故答案为(2,5).考点:二次函数的性质.14、5:8【解析】试题解析:∴AE:EC=AD:DB=3:5,∴CE:CA=5:8,∴CF:CB=CE:CA=5:8.故答案为5:8.15、2:1.【解析】过点O作OE⊥AB于点E,延长EO交CD于点F,可得OF⊥CD,由AB//CD,可得△AOB∽△DOC,根据相似三角形对应高的比等于相似比可得,由此即可求得答案.【详解】如图,过点O作OE⊥AB于点E,延长EO交CD于点F,∵AB//CD,∴∠OFD=∠OEA=90°,即OF⊥CD,∵AB//CD,∴△AOB∽△DOC,又∵OE⊥AB,OF⊥CD,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,∴=,故答案为:2:1.【点睛】本题考查了相似三角形的的判定与性质,熟练掌握相似三角形对应高的比等于相似比是解本题的关键.16、1.【分析】根据重心的性质可得AG:DG=2:1,然后根据平行线分线段成比例定理可得==2,从而求出CE,即可求出结论.【详解】∵点G为△ABC的重心,∴AG:DG=2:1,∵GE∥AC,∴==2,∴CE=2DE=2×2=4,∴CD=DE+CE=2+4=1.故答案为:1.【点睛】此题考查的是重心的性质和平行线分线段成比例定理,掌握重心的性质和平行线分线段成比例定理是解决此题的关键.17、(2.5,3)【分析】利用点B(3,1),B′(6,2)即可得出位似比进而得出A的坐标.【详解】解:∵点B(3,1),B′(6,2),点A′(5,6),∴A的坐标为:(2.5,3).故答案为:(2.5,3).【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.18、4【分析】根据垂径定理可得AD=AB,然后由勾股定理可得OD的长,继而可得CD的高求解.【详解】解:∵CD垂直平分AB,∴AD=1.∴OD==6m,∴CD=OC−OD=10−6=4(m).故答案是:4【点睛】本题考查垂径定理和勾股定理的实际应用,掌握这些知识点是解题关键.三、解答题(共66分)19、,【分析】先移项,再提公因式,利用因式分解法求解即可.【详解】解:移项,得(x+1)²-(5x+5)=0提取公因式,得(x+1)(x+1-5)=0所以有,x+1=0或者x+1-5=0所以,.【点睛】本题考查了分解因式法解一元二次方程,有多种解法,可用自己熟悉的来解.20、①证明见解析;(2)S菱形CODP=24.【解析】①根据DP∥AC,CP∥BD,即可证出四边形CODP是平行四边形,由矩形的性质得出OC=OD,即可得出结论;②利用S△COD=12S菱形CODP,先求出S△COD,即可得【详解】证明:①∵DP∥AC,CP∥BD∴四边形CODP是平行四边形,∵四边形ABCD是矩形,∴BD=AC,OD=12BD,OC=12∴OD=OC,∴四边形CODP是菱形.②∵AD=6,AC=10∴DC=AC2∵AO=CO,∴S△COD=12S△ADC=12×12∵四边形CODP是菱形,∴S△COD=12S菱形CODP=12∴S菱形CODP=24【点睛】本题考查了矩形性质和菱形的判定,解题关键是熟练掌握菱形的判定方法,由矩形的性质得出OC=OD.21、(1)证明见解析;(2)证明见解析.【分析】(1)连接GE,根据正方形的性质和平行线的性质得到∠AEG=∠CGE,根据菱形的性质和平行线的性质得到∠HEG=∠FGE,解答即可;(2)证明Rt△HAE≌Rt△GDH,得到∠AHE=∠DGH,证明∠GHE=90°,根据正方形的判定定理证明.【详解】解:(1)连接GE,∵AB∥CD,∴∠AEG=∠CGE,∵GF∥HE,∴∠HEG=∠FGE,∴∠HEA=∠CGF;(2)∵四边形ABCD是正方形,∴∠D=∠A=90°,∵四边形EFGH是菱形,∴HG=HE,在Rt△HAE和Rt△GDH中,∴Rt△HAE≌Rt△GDH(HL),∴∠AHE=∠DGH,又∠DHG+∠DGH=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∴菱形EFGH为正方形.【点睛】本题考查的是正方形的性质、菱形的性质、全等三角形的判定和性质,正确作出辅助线、灵活运用相关的性质定理和判定定理是解题的关键.22、2﹣.【分析】设AC=m,解直角三角形求出AB,BC,BD即可解决问题.【详解】设AC=m,在Rt△ABC中,∵∠C=90°,∠ABC=30°,∴AB=2AC=2m,BC=AC=m,∴BD=AB=2m,DC=2m+m,∴tan∠ADC===.【点睛】本题考查求正切值,熟记正切的定义,解出直角三角形的边长是解题的关键.23、(1)60°(2)见解析【分析】(1)根据“同弧所对的圆周角相等”可以得到∠ADC=∠B=60°.(2)欲证明AE是⊙O的切线,只需证明BA⊥AE即可.【详解】解:(1)∵∠B与∠ADC都是弧AC所对的圆周角,∠B=60°,∴∠ADC=∠B=60°(2)证明:∵AB是⊙O的直径,∴∠ACB=90°∵∠B=60°,∴∠BAC=30°又∵∠EAC=60°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE.又∵AB是⊙O的直径,∴AE是⊙O的切线.24、(1);(2)且.【分析】(1)过作于,延长交于点,如图1,易证∽,于是设,则,可得,然后在中根据勾股定理即可求出a的值,进而可得的长,设,则可用n的代数式表示,连接FB、,如图2,根据轴对称的性质易得,再在中,根据勾股定理即可求出n的值,于是可得结果;(2)仿(1)题的思路,在中,利用勾股定理可得关于x和m的方程,然后利用一元二次方程的根的判别式和二次函数的知识即可求出m的范围,再结合点的特殊位置可得m的最大值,从而可得答案.【详解】解:(1)∵四边形ABCD是矩形,∴AB∥CD,过作于,延长交于点,如图1,则AB∥CD∥QH,∴∽,∴,设,则,∴.在中,∵,∴,解得:或(舍去).∴,∴,设,则,连接FB、,如图2,则,在中,由勾股定理,得:,∴,解得:,∴;(2)如图1,∵,∴,设,则,∴.在中,∵,∴,整理,得:,若翻折后存在点落在线段上,则上述方程有实数根,即△≥0,∴,整理,得:,由二次函数的知识可得:,或(舍去),∵,∴,当x=m时,方程即为:,解得:,∴,又∵当点与点C重合时,m的值达到最大,即当x=0时,,解得:m=1.∴m的取值范围是:且.故答案为:且.【点睛】本题是矩形折叠综合题,主要考查了矩形的性质、轴对称的性质、相似三角形的判定和性质、勾股定理、一元二次方程的解法和根的判别式以及二次函数的性质等知识,综合性强、难度较大,熟练掌握折叠的性质和勾股定理、灵活利用方程的数学思想是解(1)题的关键,灵活应用一元二次方程的根的判别式和二次函数的知识是解(2)题的关键.25、(1)见解析;(2);(3)AE=【分析】(1)如图1,连接OD,由等腰三角形的性质可证∠B=∠ODB=∠CAD,由直角三角形的性质可求∠ADO=90°,可得结论;(2)分别求出OD的长度和∠DOB的度数,再由弧长公式可求解;(3)通过证明ACD∽BDE,可得,设CD=2x,DE=3x,由平行线的性质可求x=,由勾股定理可求AB的长,即可求解.【详解】解:(1)如图1,连接OD,∵∠ACB=90°,∴∠CAD+∠ADC=90°,∵OB=OD,∴∠B=∠ODB,∵∠CAD=∠B,∴∠CAD=∠ODB,∴∠ODB+∠ADC=90°,∴∠ADO=90°,又∵OD是半径,∴AD是⊙O的切线;(2)∵∠B=30°,∠ACB=90°,∴∠CAD=30°,∠CAB=60°,∴AD=2CD=3,∠DAB=30°,∴AD=OD,∴OD=,∵OD=OB,∠B=30°,∴∠B=∠ODB=30°,∴∠DOB=120°,∴劣弧BD的长==;(3)如图2,连接DE,∵BE是直径,∴∠BDE=90°,∴∠ACB=∠EDB=90°,∴AC∥DE,∵∠B=∠CAD,∠ACD=∠EDB,∴ACD∽BDE,∴,∴设CD=2x,DE=3x,∵AC∥DE,∴,∴,∴x=,∴CD=1,BC=BD+CD=4,∴AB==2,∵DE∥AC,∴,∴AE=.【点睛】此题考查的是圆的综合大题、勾股定理和相似三角形的判定及性质,掌握切线的判定定理、弧长公式圆周角定理及推论、勾股定理和相似三角形的判定及性质是解决此题的关键.26、(1)(3,4);(2)或;(3)m的取值范围是或.【分析】(1)根据点C到x轴、y轴的距离解答即可;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 天然气运输合同三篇
- 精心装饰的艺术工作室三篇
- 简单版转让合同协议书范文范本
- (完整版)第八章财务报表分析习题及答案
- 分子生物学3生物信息的传递(上)-从DNA到RNA
- 游乐场入驻合作协议书范文模板
- 圣诞节课件教学课件
- 鼻旁窦相关资料
- 一例重度子痫前期、妊娠期糖尿病、胎盘早剥、死胎
- 2-1-维持和改善关节活动度的训练
- 3D打印技术在教育领域的应用案例报告
- 航天集团员工手册
- 物联网中的边缘智能设备与边缘计算
- 篮球培训年终总结报告
- 学校安全双重预防体系建设
- 反洗钱:非自然人客户信息登记表
- 社会工作实务操作手册 课件 项目七 老年社会工作
- 事业单位正式人员在编证明
- 武术市场数据分析报告
- 如何处理进度与工程质量及成本之间的关系
- “小动物外形的描写”写作指导课件
评论
0/150
提交评论