版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.圆锥的底面半径是5cm,侧面展开图的圆心角是180°,圆锥的高是()A.5cm B.10cm C.6cm D.5cm2.将抛物线向上平移个单位长度,再向右平移个单位长度,得到的抛物线为()A. B.C. D.3.在△ABC中,若三边BC,CA,AB满足BC:CA:AB=3:4:5,则cosA的值为()A. B. C. D.4.-4的相反数是()A. B. C.4 D.-45.已知a、b、c、d是比例线段.a=2、b=3、d=1.那么c等于()A.9 B.4 C.1 D.126.若用圆心角为120°,半径为9的扇形围成一个圆锥侧面(接缝忽略不计),则这个圆锥的底面直径是()A.3 B.6C.9 D.127.在一个布袋里放有个红球,个白球和个黑球,它们除了颜色外其余都相同,从布袋中任意摸出一个球是白球的概率()A. B.C. D.8.如图,在中,,,则的值是()A. B.1 C. D.9.已知x=2是一元二次方程x2+mx+2=0的一个解,则m的值是()A.﹣3 B.3 C.0 D.0或310.根据阿里巴巴公布的实时数据,截至年月日时,天猫双全球狂欢节总交易额约亿元,用科学记数法表示为()A. B. C. D.11.在半径为的圆中,挖出一个半径为的圆面,剩下的圆环的面积为,则与的函数关系式为()A. B. C. D.12.如图,矩形矩形,连结,延长分别交、于点、,延长、交于点,一定能求出面积的条件是()A.矩形和矩形的面积之差 B.矩形和矩形的面积之差C.矩形和矩形的面积之差 D.矩形和矩形的面积之差二、填空题(每题4分,共24分)13.关于的方程有一个根,则另一个根________.14.将抛物线y=x2向左平移4个单位后,再向下平移2个单位,则此时抛物线的解析式是________.15.已知二次函数y=-x-2x+3的图象上有两点A(-7,),B(-8,),则▲.(用>、<、=填空).16.在本赛季比赛中,某运动员最后六场的得分情况如下:17、15、21、28、12、19,则这组数据的方差为______.17.方程x2+2x﹣1=0配方得到(x+m)2=2,则m=_____.18.如图,矩形ABCD中,AB=2,BC=,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1﹣S2为_____.三、解答题(共78分)19.(8分)如图,Rt△ABC中,∠BAC=90°,AB=2,AC=4,D是BC边上一点,且BD=CD,G是BC边上的一动点,GE∥AD分别交直线AC,AB于F,E两点.(1)AD=;(2)如图1,当GF=1时,求的值;(3)如图2,随点G位置的改变,FG+EG是否为一个定值?如果是,求出这个定值,如果不是,请说明理由.20.(8分)如图,△ABC中,AB=AC=10,BC=6,求sinB的值.21.(8分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象相交于第一、三象限内的两点,与轴交于点.⑴求该反比例函数和一次函数的解析式;⑵在轴上找一点使最大,求的最大值及点的坐标;⑶直接写出当时,的取值范围.22.(10分)如图,AB为⊙O的直径,射线AP交⊙O于C点,∠PCO的平分线交⊙O于D点,过点D作交AP于E点.(1)求证:DE为⊙O的切线;(2)若DE=3,AC=8,求直径AB的长.23.(10分)解一元二次方程:24.(10分)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在轴,轴的正半轴上.函数的图象与CB交于点D,函数(为常数,)的图象经过点D,与AB交于点E,与函数的图象在第三象限内交于点F,连接AF、EF.(1)求函数的表达式,并直接写出E、F两点的坐标.(2)求△AEF的面积.25.(12分)如图,△ABC的高AD与中线BE相交于点F,过点C作BE的平行线、过点F作AB的平行线,两平行线相交于点G,连接BG.(1)若AE=2.5,CD=3,BD=2,求AB的长;(2)若∠CBE=30°,求证:CG=AD+EF.26.已知二次函数.(1)求证:无论m取任何实数时,该函数图象与x轴总有交点;(2)如果该函数的图象与x轴交点的横坐标均为正数,求m的最小整数值.
参考答案一、选择题(每题4分,共48分)1、A【解析】设圆锥的母线长为R,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2π•5=,然后解方程即可母线长,然后利用勾股定理求得圆锥的高即可.【详解】设圆锥的母线长为R,根据题意得2π•5,解得R=1.即圆锥的母线长为1cm,∴圆锥的高为:5cm.故选:A.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.2、B【分析】根据抛物线的平移规律:上加下减,左加右减解答即可.【详解】解:将抛物线向上平移个单位长度,再向右平移个单位长度,得到的抛物线为:.故选:B.【点睛】本题考查了抛物线的平移,属于基础题型,熟练掌握抛物线的平移规律是解题的关键.3、D【分析】根据已知条件,运用勾股定理的逆定理可得该三角形为直角三角形,再根据余弦的定义解答即可.【详解】解:设分别为,,为直角三角形,.【点睛】本题主要考查了勾股定理的逆定理和余弦,熟练掌握对应知识点是解答关键.4、C【分析】根据相反数的定义即可求解.【详解】-4的相反数是4,故选C.【点晴】此题主要考查相反数,解题的关键是熟知相反数的定义.5、B【分析】根据比例线段的定义得到a:b=c:d,即2:3=c:1,然后利用比例性质求解即可.【详解】∵a、b、c、d是比例线段,∴a:b=c:d,即2:3=c:1,∴3c=12,解得:c=2.故选:B.【点睛】本题考查了比例线段:对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如a:b=c:d(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.6、B【详解】设这个圆锥的底面半径为r,∵扇形的弧长==1π,∴2πr=1π,∴2r=1,即圆锥的底面直径为1.故选B.7、C【分析】根据概率公式,求摸到白球的概率,即用白球除以小球总个数即可得出得到黑球的概率.【详解】∵在一个布袋里放有个红球,个白球和个黑球,它们除了颜色外其余都相同,∴从布袋中任意摸出一个球是白球的概率为:.故选:C.【点睛】此题主要考查了概率公式的应用,由已知求出小球总个数再利用概率公式求出是解决问题的关键.8、A【分析】利用相似三角形的性质:相似三角形的面积比等于相似比的平方得到,即可解决问题.【详解】∵,∴,∴,∴,故选:A.【点睛】本题考查相似三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.9、A【分析】直接把x=2代入已知方程就得到关于m的方程,再解此方程即可.【详解】解:∵x=2是一元二次方程x2+mx+2=0的一个解,∴4+2m+2=0,∴m=﹣1.故选:A.【点睛】本题考查的是一元二次方程的解,难度系数较低,直接把解代入方程即可.10、A【解析】根据科学计数法的表示方法即可得出答案.【详解】根据科学计数法的表示方法可得:2135应该表示为2.135×103,故答案选择A.【点睛】本题考查的是科学计数法的表示方式:(,n为正整数).11、D【分析】根据圆环的面积=大圆的面积-小圆的面积,即可得出结论.【详解】解:根据题意:y=故选D.【点睛】此题考查的是圆环的面积公式,掌握圆环的面积=大圆的面积-小圆的面积是解决此题的关键.12、B【分析】根据相似多边形的性质得到,即AF·BC=AB·AH①.然后根据IJ∥CD可得,,再结合以及矩形中的边相等可以得出IJ=AF=DE.最后根据S△BIJ=BJ·IJ=BJ·DE=(BC-DH)·DE=BC·AF-DH·DE②,结合①②可得出结论.【详解】解:∵矩形ABCD∽矩形FAHG,,∴AF·BC=AB·AH,又IJ∥CD,∴,又DC=AB,BJ=AH,∴,∴IJ=AF=DE.S△BIJ=BJ·IJ=BJ·DE=(BC-DH)·DE=BC·AF-DH·DE=AB·AH-DH·DE=(S矩形ABJH-S矩形HDEG).∴能求出△BIJ面积的条件是知道矩形ABJH和矩形HDEG的面积之差.故选:B.【点睛】本题考查了相似多边形的性质,矩形的性质等知识,正确的识别图形及运用相关性质是解题的关键.二、填空题(每题4分,共24分)13、2【分析】由根与系数的关系,根据两根之和为计算即可.【详解】∵关于的方程有一个根,
∴
解得:;
故答案为:.【点睛】本题考查了一元二次方程根与系数的关系,熟记根与系数的关系的结构是解题的关键.14、y=(x+4)2-2【解析】∵y=x2向左平移4个单位后,再向下平移2个单位.∴y=.故此时抛物线的解析式是y=.故答案为y=(x+4)2-2.点睛:主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.15、>.【解析】根据已知条件求出二次函数的对称轴和开口方向,再根据点A、B的横坐标的大小即可判断出y1与y1的大小关系:∵二次函数y=﹣x1﹣1x+3的对称轴是x=﹣1,开口向下,∴在对称轴的左侧y随x的增大而增大.∵点A(﹣7,y1),B(﹣8,y1)是二次函数y=﹣x1﹣1x+3的图象上的两点,且﹣7>﹣8,∴y1>y1.16、.【分析】先计算出这组数据的平均数,然后根据方差公式求解.【详解】解:平均数=所以方差是S2==故答案为:.【点睛】本题考查方差:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17、1【解析】试题解析:x2+2x-1=0,x2+2x=1,x2+2x+1=2,(x+1)2=2,则m=1;故答案为1.18、3﹣【分析】根据图形可以求得BF的长,然后根据图形即可求得S1﹣S2的值.【详解】解:∵在矩形ABCD中,AB=2,BC=,F是AB中点,∴BF=BG=1,∴S1=S矩形ABCD-S扇形ADE﹣S扇形BGF+S2,∴S1-S2=2×--=3-,故答案为:3﹣.【点睛】此题考查的是求不规则图形的面积,掌握矩形的性质和扇形的面积公式是解决此题的关键.三、解答题(共78分)19、(1)AD=;(2);(3)FG+EG是一个定值,为.【分析】(1)先由勾股定理求出BC的长,再由直角三角形斜边中线的性质可求出AD的长;(2)先证FG=CG=1,通过BD=CDBC=AD,求出BG的长,再证△BGE∽△BDA,利用相似三角形的性质可求出的值;(3)由(2)知FG=CG,再证EG=BG,即可证FG+EG=BC=2.【详解】(1)∵∠BAC=90°,且BD=CD,∴ADBC.∵BC2,∴AD2.故答案为:;(2)如图1.∵GF∥AD,∴∠CFG=∠CAD.∵BD=CDBC=AD,∴∠CAD=∠C,∴∠CFG=∠C,∴CG=FG=1,∴BG=21.∵AD∥GE,∴△BGE∽△BDA,∴;(3)如图2,随点G位置的改变,FG+EG是一个定值.理由如下:∵ADBC=BD,∴∠B=∠BAD.∵AD∥EG,∴∠BAD=∠E,∴∠B=∠E,∴EG=BG,由(2)知,GF=GC,∴EG+FG=BG+CG=BC=2,∴FG+EG是一个定值,为2.【点睛】本题考查了直角三角形的性质,相似三角形的判定与性质等,解题的关键是能够灵活运用相似三角形的判定与性质.20、【分析】过点A作于D,根据等腰三角形的三线合一性质求出根据勾股定理求出,最后用正弦的定义即可.【详解】解:过点A作于D,又∵△ABC中,AB=AC=10,BC=6,∴,.∴.【点睛】本题考查了等腰三角形的三线合一性质、勾股定理、锐角三角函数的定义,构造直角三角形是解题的关键.21、⑴,;⑵的最大值为,;⑶或.【分析】(1)利用待定系数法,即可得到反比例函数和一次函数的解析式;(2)根据一次函数y1=x+2,求得与y轴的交点P,此交点即为所求;(3)根据AB两点的横坐标及直线与双曲线的位置关系求x的取值范围.【详解】⑴.∵在反比例函数上∴∴反比例函数的解析式为把代入可求得∴.把代入为解得.∴一次函数的解析式为.⑵的最大值就是直线与两坐标轴交点间的距离.设直线与轴的交点为.令,则,解得,∴令,则,,∴∴,∴的最大值为.⑶根据图象的位置和图象交点的坐标可知:当时的取值范围为;或.【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法求反比例函数和一次函数的解析式,根据点的坐标求线段长,正确掌握反比例函数的性质是解题的关键.22、(1)证明见解析;(3)1.【分析】(1)连接OD若要证明DE为⊙O的切线,只要证明∠DOE=90°即可;(3)过点O作OF⊥AP于F,利用垂径定理以及勾股定理计算即可.【详解】解:连接OD.∵OC=OD,∴∠1=∠3.∵CD平分∠PCO,∴∠1=∠3.∴∠3=∠3.∵DE⊥AP,∴∠3+∠EDC=90°.∴∠3+∠EDC=90°.即∠ODE=90°.∴OD⊥DE.∴DE为⊙O的切线.(3)过点O作OF⊥AP于F.由垂径定理得,AF=CF.∵AC=8,∴AF=4.∵OD⊥DE,DE⊥AP,∴四边形ODEF为矩形.∴OF=DE.∵DE=3,∴OF=3.在Rt△AOF中,OA3=OF3+AF3=43+33=36.∴OA=6.∴AB=3OA=1.【点睛】本题考查1.切线的判定;3.勾股定理;3.垂径定理,属于综合性题目,掌握相关性质定理正确推理论证是解题关键.23、,.【分析】利用十字相乘法即可解方程.【详解】,(x+1)(2x-5)=0,∴,.【点睛】此题考查一元二次方程的解法,根据方程的特点选择适合的方法求解是解题的关键.24、(1),E(2,1),F(-1,-2);(2).【分析】(1)先得到点D的坐标,再求出k的值即可确定反比例函数解析式;(2)过点F作FG⊥AB,与BA的延长线交于点G.由E、F两点的坐标,得到AE=1,FG=2-(-1)=3,从而得到△AEF的面积.【详解】解:(1)∵正方形OABC的边长为2,∴点D的纵坐标为2,即y=2,将y=2代入y=2x,得到x=1,∴点D的坐标为(1,2).∵函数的图象经过点D,∴,∴k=2,∴函数的表达式为.(2)过点F作FG⊥AB,与BA的延长线交于点G.根据反比例函数图象的对称性可知:点D与点F关于原点O对称∴点F的坐标分别为(-1,-2),把x=2代入得,y=1;∴点E的坐标(2,1);∴AE=1,FG=2-(-1)=3,∴△AEF的面积为:AE•FG=.25、(1);(2)见解析.【分析】(1)BE是△ABC的中线,则AC=5,由勾股定理求出AD的长,再由勾股定理求得AB的长;
(2)过点E作EM∥FG,作EN∥AD,先得出EN=AD,然后证明EN=BE,从而有AD=BE.再证明△ABE≌△EMC,得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年影视制作进度付款合同2篇
- 模板采购合同
- 工作合同范文
- 2024年度药品研发与临床试验合同2篇
- 活动板房拆除协议书3篇
- 甘肃省陇南市(2024年-2025年小学五年级语文)人教版随堂测试((上下)学期)试卷及答案
- 2024年度钢筋购销与质量检测合同2篇
- 基于2024年度互联网金融风险控制的合同
- 违约方合同解除权问题研究
- 农村土地贷款抵押协议 土地抵押借款借条
- 《王戎不取道旁李》课件完美版
- 帕金森病人康复治疗课件
- “四风”问题查摆整改台账
- 输出DAG的所有拓扑排序序列
- 年产3000吨腈纶纱项目建设项目环境影响报告表【模板】
- GB∕T 37092-2018 信息安全技术密码模块安全要求
- 网络拓扑图标库超级全的汇总
- 山东中小学校体育器材配备标准
- 麻醉科各种应急处理预案流程图
- 4第三章 电力系统运行的灵敏度分析及应用
- 圆锥曲线离心率专题训练
评论
0/150
提交评论