初中数学人教版九年级下册第二十八章锐角三角函数单元复习_第1页
初中数学人教版九年级下册第二十八章锐角三角函数单元复习_第2页
初中数学人教版九年级下册第二十八章锐角三角函数单元复习_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

应用举例第1课时解直角三角形的简单应用1.通过生活中的实际问题体会锐角三角函数在解题过程中的作用;(重点)2.能够把实际问题转化为数学问题,建立数学模型,并运用解直角三角形求解.(难点)一、情境导入为倡导“低碳生活”,人们常选择以自行车作为代步工具.图①所示的是一辆自行车的实物图,图②是这辆自行车的部分几何示意图,其中车架档AC与CD的长分别为45cm和60cm,且它们互相垂直,座杆CE的长为20cm.点A、C、E在同一条直线上,且∠CAB=75°.你能求出车架档AD的长吗?二、合作探究探究点:解直角三角形的简单应用【类型一】求河的宽度根据网上消息,益阳市为了改善市区交通状况,计划在康富路的北端修建通往资江北岸的新大桥.如图,新大桥的两端位于A、B两点,小张为了测量A、B之间的河宽,在垂直于新大桥AB的直线型道路l上测得如下数据:∠BDA=°,∠BCA=°,CD=82米.求AB的长(精确到米).参考数据:°≈,°≈,°≈;°≈,°≈,°≈.解析:设AD=xm,则AC=(x+82)m.在Rt△ABC中,根据三角函数得到AB=(x+82)m,在Rt△ABD中,根据三角函数得到AB=4x,依此得到关于x的方程,进一步即可求解.解:设AD=xm,则AC=(x+82)m.在Rt△ABC中,tan∠BCA=eq\f(AB,AC),∴AB=AC·tan∠BCA=(x+82).在Rt△ABD中,tan∠BDA=eq\f(AB,AD),∴AB=AD·tan∠BDA=4x,∴(x+82)=4x,解得x=eq\f(410,3).∴AB=4x=4×eq\f(410,3)≈.答:AB的长约为.方法总结:解题的关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.变式训练:见《学练优》本课时练习“课堂达标训练”第3题【类型二】求不可到达的两点的高度如图,放置在水平桌面上的台灯的灯臂AB长为30cm,灯罩BC长为20cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少(结果精确到,参考数据:eq\r(3)≈?解析:首先过点B作BF⊥CD于点F,作BG⊥AD于点G,进而求出FC的长,再求出BG的长,即可得出答案.解:过点B作BF⊥CD于点F,作BG⊥AD于点G,∴四边形BFDG是矩形,∴BG=FD.在Rt△BCF中,∠CBF=30°,∴CF=BC·sin30°=20×eq\f(1,2)=10cm.在Rt△ABG中,∵∠BAG=60°,∴BG=AB·sin60°=30×eq\f(\r(3),2)=15eq\r(3)cm,∴CE=CF+FD+DE=10+15eq\r(3)+2=12+15eq\r(3)≈(cm).答:此时灯罩顶端C到桌面的高度CE约是.方法总结:将实际问题抽象为数学问题,画出平面图形,构造出直角三角形转化为解直角三角形问题.变式训练:见《学练优》本课时练习“课后巩固提升”第6题【类型三】方案设计类问题小锋家有一块四边形形状的空地(如图③,四边形ABCD),其中AD∥BC,BC=,AD=,CD=,∠C=90°,∠A=53°.小锋的爸爸想买一辆长,宽的汽车停放在这块空地上,让小锋算算是否可行.小锋设计了两种方案,如图①和图②所示.(1)请你通过计算说明小锋的两种设计方案是否合理;(2)请你利用图③再设计一种有别于小锋的可行性方案,并说明理由(参考数据:sin53°=,cos53°=,tan53°=eq\f(4,3)).解析:(1)方案1,如图①所示,在Rt△AGE中,依据正切函数求得AG的长,进而求得DG的长,然后与汽车的宽度比较即可;方案2,如图②所示,在Rt△ALH中,依据正切函数求得AL的长,进而求得DL的长,然后与汽车的长度比较即可;(2)让汽车平行于AB停放,如图③,在Rt△AMN中,依据正弦函数求得AM的长,进而求得DM的长.在Rt△PDM中,依据余弦函数求得PM的长,然后与汽车的长度比较即可.解:(1)如图①,在Rt△AGE中,∵∠A=53°,∴AG=eq\f(EG,tan∠A)=eq\f,\f(4,3))m≈,∴DG=AD-AG=-=<,故此方案不合理;如图②,在Rt△ALH中,∵∠A=53°,LH=,∴AL=eq\f(LH,tan53°)=eq\f,\f(4,3))≈,∴DL=AD-AL=-=<,故此方案不合理;(2)如图③,过DA上一点M作MN⊥AB于点N,过CD上一点P作PQ⊥AB于点Q,连PM,在Rt△AMN中,∵∠A=53°,MN=,∴AM=eq\f(MN,sin53°)=eq\f,≈,∴DM=-=.在Rt△PDM中,∵∠PMD=∠A=53°,DM=,∴PM=eq\f(DM,cos53°)=eq\f,≈>,故此方案合理.方法总结:本题主要是利用三角函数解决实际问题,关键是把实际问题转化为解直角三角形的问题,利用三角函数解决问题.变式训练:见《学练优》本课时练习“课后巩固提升”第7题三、板书设计1.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论