版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,在平面直角坐标系中,直线l的表达式是,它与两坐标轴分别交于C、D两点,且∠OCD=60º,设点A的坐标为(m,0),若以A为圆心,2为半径的⊙A与直线l相交于M、N两点,当MN=时,m的值为()A. B. C.或 D.或2.如图,中,,,.将沿图示中的虚线剪开,按下面四种方式剪下的阴影三角形与原三角形相似的是()A.①②③ B.②③④ C.①② D.④3.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与函数、的图象交于B、A两点,则∠OAB大小的变化趋势为()A.逐渐变小 B.逐渐变大 C.时大时小 D.保持不变4.以下事件属于随机事件的是()A.小明买体育彩票中了一等奖B.2019年是中华人民共和国建国70周年C.正方体共有四个面D.2比1大5.若用圆心角为120°,半径为9的扇形围成一个圆锥侧面(接缝忽略不计),则这个圆锥的底面直径是()A.3 B.6C.9 D.126.下列图形是中心对称图形的是()A. B. C. D.7.如图,在⊙O中,弦AB的长为8,圆心O到AB的距离为3,则⊙O的半径为()A.10 B.8 C.7 D.58.若一个扇形的圆心角是45°,面积为,则这个扇形的半径是()A.4 B. C. D.9.如图,在四边形中,,点分别是边上的点,与交于点,,则与的面积之比为()A. B. C.2 D.410.如图,⊙是的外接圆,,则的度数为()A.60° B.65° C.70° D.75°二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,直线l的函数表达式为y=x,点O1的坐标为(1,0),以O1为圆心,O1O为半径画圆,交直线l于点P1,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交直线l于点P2,交x轴正半轴于点O3,以O3为圆心,O3O为半径画圆,交直线l于点P3,交x轴正半轴于点O4;…按此做法进行下去,其中的长为_____.12.如图,位似图形由三角尺与其灯光下的中心投影组成,相似比为2:5,且三角尺的一边长为8cm,则投影三角形的对应边长为_______㎝.13.如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数的图象经过点C,则k的值为.14.如图,在中,点分别是边上的点,,则的长为________.15.如图,某水坝的坡比为,坡长为米,则该水坝的高度为__________米.16.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AB的长为2.4km,则M,C两点间的距离为______km.17.如图,平行四边形的顶点在轴正半轴上,平行于轴,直线交轴于点,,连接,反比例函数的图象经过点.已知,则的值是________.18.已知菱形ABCD的两条对角线相交于点O,若AB=6,∠BDC=30°,则菱形的面积为.三、解答题(共66分)19.(10分)点为图形上任意一点,过点作直线垂足为,记的长度为.定义一:若存在最大值,则称其为“图形到直线的限距离”,记作;定义二:若存在最小值,则称其为“图形到直线的基距离”,记作;(1)已知直线,平面内反比例函数在第一象限内的图象记作则.(2)已知直线,点,点是轴上一个动点,的半径为,点在上,若求此时的取值范围,(3)已知直线恒过定点,点恒在直线上,点是平面上一动点,记以点为顶点,原点为对角线交点的正方形为图形,若请直接写出的取值范围.20.(6分)计算:(1)(2)21.(6分)某企业生产并销售某种产品,整理出该商品在第()天的售价与函数关系如图所示,已知该商品的进价为每件30元,第天的销售量为件.(1)试求出售价与之间的函数关系是;(2)请求出该商品在销售过程中的最大利润;(3)在该商品销售过程中,试求出利润不低于3600元的的取值范围.22.(8分)画出抛物线y=﹣(x﹣1)2+5的图象(要求列表,描点),回答下列问题:(1)写出它的开口方向,对称轴和顶点坐标;(2)当y随x的增大而增大时,写出x的取值范围;(3)若抛物线与x轴的左交点(x1,0)满足n≤x1≤n+1,(n为整数),试写出n的值.23.(8分)解方程:(1)x1﹣1x﹣3=0;(1)3x1﹣6x+1=1.24.(8分)如图,是经过某种变换得到的图形,点与点,点与点,点与点分别是对应点,观察点与点的坐标之间的关系,解答下列问题:分别写出点与点,点与点,点与点的坐标,并说说对应点的坐标有哪些特征;若点与点也是通过上述变换得到的对应点,求、的值.25.(10分)如图,已知⊙O的半径长为R=5,弦AB与弦CD平行,它们之间距离为5,AB=6,求弦CD的长.26.(10分)如图,已知二次函数与轴交于两点(点在点的左边),与轴交于点.(1)写出两点的坐标;(2)二次函数,顶点为.①直接写出二次函数与二次函数有关图象的两条相同的性质;②是否存在实数,使为等边三角形?如存在,请求出的值;如不存在,请说明理由;③若直线与抛物线交于两点,问线段的长度是否发生变化?如果不会,请求出的长度;如果会,请说明理由.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据题意先求得、的长,分两种情况讨论:①当点在直线l的左侧时,利用勾股定理求得,利用锐角三角函数求得,即可求得答案;②当点在直线l的右侧时,同理可求得答案.【详解】令,则,点D的坐标为,∵∠OCD=60º,∴,分两种情况讨论:①当点在直线l的左侧时:如图,过A作AG⊥CD于G,∵,MN=,∴,∴,在中,∠ACG=60º,∴,∴,∴,②当点在直线l的右侧时:如图,过A作AG⊥直线l于G,∵,MN=,∴,∴,在中,∠ACG=60º,∴,∴,∴,综上:m的值为:或.故选:C.【点睛】本题考查了一次函数图象上点的坐标特征,勾股定理,锐角三角函数,分类讨论、构建合适的辅助线是解题的关键.2、A【分析】根据相似三角形的判定定理对各项进行逐项判断即可.【详解】解:①剪下的三角形与原三角形有两个角相等,故两三角形相似;②剪下的三角形与原三角形有两个角相等,故两三角形相似;③剪下的三角形与原三角形对应边成比例,故两三角形相似;④剪下的三角形与原三角形对应边不成比例,故两三角形不相似;综上所述,①②③剪下的三角形与原三角形相似.故选:A.【点睛】本题考查的知识点是相似三角形的判定定理,熟记定理内容是解此题的关键.3、D【解析】如图,作辅助线;首先证明△BEO∽△OFA,,得到;设B为(a,),A为(b,),得到OE=-a,EB=,OF=b,AF=,进而得到,此为解决问题的关键性结论;运用三角函数的定义证明知tan∠OAB=为定值,即可解决问题.【详解】解:分别过B和A作BE⊥x轴于点E,AF⊥x轴于点F,则△BEO∽△OFA,∴,设点B为(a,),A为(b,),则OE=-a,EB=,OF=b,AF=,可代入比例式求得,即,根据勾股定理可得:OB=,OA=,∴tan∠OAB===∴∠OAB大小是一个定值,因此∠OAB的大小保持不变.故选D【点睛】该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.4、A【分析】随机事件是指在一定条件下,可能发生也可能不发生的事件,依据随机事件定义可以作出判断.【详解】A、小明买体育彩票中了一等奖是随机事件,故本选项正确;B、2019年是中华人民共和国建国70周年是确定性事件,故本选项错误;C、正方体共有四个面是不可能事件,故本选项错误;D、2比1大是确定性事件,故本选项错误;故选:A.【点睛】此题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5、B【详解】设这个圆锥的底面半径为r,∵扇形的弧长==1π,∴2πr=1π,∴2r=1,即圆锥的底面直径为1.故选B.6、B【解析】根据中心对称图形的定义,在平面内,把图形绕着某个点旋转,如果旋转后的图像能与原图形重合,就为中心对称图形.【详解】选项A,不是中心对称图形.选项B,是中心对称图形.选项C,不是中心对称图形.选项D,不是中心对称图形.故选B【点睛】本题考查了中心对称图形的定义.7、D【分析】根据垂径定理可得出AE的值,再根据勾股定理即可求出答案.【详解】解:∵OE⊥AB,∴AE=BE=4,∴.故选:D.【点睛】本题考查的知识点是垂径定理,根据垂径定理得出AE的值是解此题的关键.8、A【分析】根据扇形面积公式计算即可.【详解】解:设扇形的半径为为R,由题意得,解得R=4.故选A.【点睛】本题考查了扇形的面积公式,R是扇形半径,n是弧所对圆心角度数,π是圆周率,L是扇形对应的弧长.那么扇形的面积为:.9、D【分析】由AD∥BC,可得出△AOE∽△FOB,再利用相似三角形的性质即可得出△AOE与△BOF的面积之比.【详解】:∵AD∥BC,
∴∠OAE=∠OFB,∠OEA=∠OBF,
∴,∴所以相似比为,∴.故选:D.【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.10、C【分析】连接OB,根据等腰三角形的性质和圆周角定理即可得到结论.【详解】连接OB,∵OC=OB,∠BCO=20,∴∠OBC=20,∴∠BOC=180−20−20=140,∴∠A=140×=70,故选:C.【点睛】本题考查了圆周角定理,要知道,同弧所对的圆周角等于它所对圆心角的一半.二、填空题(每小题3分,共24分)11、22015π【分析】连接P1O1,P2O2,P3O3,易求得PnOn垂直于x轴,可知为圆的周长,再找出圆半径的规律即可解题.【详解】解:连接P1O1,P2O2,P3O3…,∵P1是⊙O1上的点,∴P1O1=OO1,∵直线l解析式为y=x,∴∠P1OO1=45°,∴△P1OO1为等腰直角三角形,即P1O1⊥x轴,同理,PnOn垂直于x轴,∴为圆的周长,∵以O1为圆心,O1O为半径画圆,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交x轴正半轴于点O3,以此类推,∴OO1=1=20,OO2=2=21,OO3=4=22,OO4=8=23,…,∴OOn=,∴,∴,故答案为:22015π.【点睛】本题考查了图形类规律探索、一次函数的性质、等腰直角三角形的性质以及弧长的计算,本题中准确找到圆半径的规律是解题的关键.12、20cm【详解】解:∵位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2:5,三角尺的一边长为8cm,∴投影三角形的对应边长为:8÷=20cm.故选B.【点睛】本题主要考查了位似图形的性质以及中心投影的应用,根据对应边的比为2:5,再得出投影三角形的对应边长是解决问题的关键.13、-6【解析】分析:∵菱形的两条对角线的长分别是6和4,∴A(﹣3,2).∵点A在反比例函数的图象上,∴,解得k=-6.【详解】请在此输入详解!14、1【分析】根据平行线分线段成比例定理即可解决问题.【详解】∵,,∴,,则,,∴,∵,∴.故答案为:1.【点睛】本题考查平行线分线段成比例定理,解题的关键是熟练掌握基本知识,属于中考常考题型.15、【分析】根据坡度的定义,可得,从而得∠A=30°,进而即可求解.【详解】∵水坝的坡比为,∠C=90°,∴,即:tan∠A=∴∠A=30°,∵为米,∴为1米.故答案是:1.【点睛】本题主要考查坡度的定义和三角函数的定义,掌握坡度的定义,是解题的关键.16、1.1【解析】根据直角三角形斜边上的中线等于斜边的一半,可得MC=12AB=1.1km【详解】∵在Rt△ABC中,∠ACB=90°,M为AB的中点,∴MC=12故答案为:1.1.【点睛】此题考查直角三角形的性质,解题关键点是熟练掌握在直角三角形中,斜边上的中线等于斜边的一半,理解题意,将实际问题转化为数学问题是解题的关键.17、1【分析】设D点坐标为(m,n),则AB=CD=m,由平行四边形的性质可得出∠BAC=∠CEO,结合∠BCA=∠COE=90°,即可证出△ABC∽△ECO,根据相似三角形的性质可得出BC•EC=AB•CO=mn,再根据S△BCE=3,即可求出k=1,此题得解.【详解】解:设D点坐标为(m,n),则AB=CD=m,∵CD平行于x轴,AB∥CD,∴∠BAC=∠CEO.∵BC⊥AC,∠COE=90°,∴∠BCA=∠COE=90°,∴△ABC∽△ECO,∴AB:CE=BC:CO,∴∴BC•EC=AB•CO=mn.∵反比例函数y=kx(x>0)的图象经过点D,∴k=mn=BC•EC=2S△BCE=1.故答案为:1.【点睛】本题考查了反比例函数图象上点的坐标特征、平行四边形的性质以及相似三角形的判定与性质,由△ABC∽△ECO得出k=mn=BC•EC是解题的关键.18、18【详解】∵ABCD是菱形,两条对角线相交于点O,AB=6∴CD=AB=6,AC⊥BD,且OA=OC,OB=OD在Rt△COD中,∵CD=6,∠BDC=30°∴∴∴三、解答题(共66分)19、(1);(2)或;(3)或【分析】(1)作直线:平行于直线,且与H相交于点P,连接PO并延长交直线于点Q,作PM⊥x轴,根据只有一个交点可求出b,再联立求出P的坐标,从而判断出PQ平分∠AOB,再利用直线表达式求A、B坐标证明OA=OB,从而证出PQ即为最小距离,最后利用勾股定理计算即可;(2)过点作直线,可判断出上的点到直线的最大距离为,然后根据最大距离的范围求出TH的范围,从而得到FT的范围,根据范围建立不等式组求解即可;(3)把点P坐标带入表达式,化简得到关于a、b的等式,从而推出直线的表达式,根据点E的坐标可确定点E所在直线表达式,再根据最小距离为0,推出直线一定与图形K相交,从而分两种情况画图求解即可.【详解】解:(1)作直线:平行于直线,且与H相交于点P,连接PO并延长交直线于点Q,作PM⊥x轴,∵直线:与H相交于点P,∴,即,只有一个解,∴,解得,∴,联立,解得,即,∴,且点P在第一、三象限夹角的角平分线上,即PQ平分∠AOB,∴为等腰直角三角形,且OP=2,∵直线:,∴当时,,当时,,∴A(-2,0),B(0,-2),∴OA=OB=2,又∵OQ平分∠AOB,∴OQ⊥AB,即PQ⊥AB,∴PQ即为H上的点到直线的最小距离,∵OA=OB,∴,∴AQ=OQ,∴在中,OA=2,则OQ=,∴,即;(2)由题过点作直线,则上的点到直线的最大距离为,∵,即,∴,由题,则,∴,又∵,∴,解得或;(3)∵直线恒过定点,∴把点P代入得:,整理得:,∴,化简得,∴,又∵点恒在直线上,∴直线的表达式为:,∵,∴直线一定与以点为顶点,原点为对角线交点的正方形图形相交,∵,∴点E一定在直线上运动,情形一:如图,当点E运动到所对顶点F在直线上时,由题可知E、F关于原点对称,∵,∴,把点F代入得:,解得:,∵当点E沿直线向上运动时,对角线变短,正方形变小,无交点,∴点E要沿直线向下运动,即;情形二:如图,当点E运动到直线上时,把点E代入得:,解得:,∵当点E沿直线向下运动时,对角线变短,正方形变小,无交点,∴点E要沿直线向上运动,即,综上所述,或.【点睛】本题考查新型定义题,弄清题目含义,正确画出图形是解题的关键.20、(1);(2)【分析】(1)利用因式分解法求解可得;
(2)利用因式分解法求解可得.【详解】(1)解:.或解之:(2)解:将原方程整理为:或,解之:【点睛】本题主要考查解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.21、(1);(2)6050;(3).【分析】(1)当1≤x≤50时,设商品的售价y与时间x的函数关系式为y=kx+b,由点的坐标利用待定系数法即可求出此时y关于x的函数关系式,根据图形可得出当50≤x≤90时,y=90;(2)根据W关于x的函数关系式,分段考虑其最值问题.当1≤x≤50时,结合二次函数的性质即可求出在此范围内W的最大值;当50≤x≤90时,根据一次函数的性质即可求出在此范围内W的最大值,两个最大值作比较即可得出结论;(3)分当时与当时利用二次函数与一次函数的性质进行得到的取值范围.【详解】(1)当时,设.∵图象过(0,40),(50,90),∴解得,∴,∴(2)当时,∵,∴当时,元;当时,∵,∴当时,元.∵,∴当时,元(3)当时,令,解得:,,∵∴当时,利润不低于3600元;当时,∵,即,解得,∴此时;综上,当时,利润不低于3600元.【点睛】本题考查了一次函数的应用、二次函数的性质以及待定系数法求一次函数解析式,解题的关键是:分段找出y关于x的函数关系式;根据销售利润=单件利润×销售数量找出W关于x的函数关系式;再利用二次函数的性质解决最值问题.22、列表画图见解析;(1)开口向上,对称轴是直线x=1,顶点坐标为(1,5);(2)x<1;(1)n=﹣1【分析】根据二次函数图象的画法,先列表,然后描点、连线即可画出该抛物线的图象;(1)根据画出的抛物线的图象,可以写出它的开口方向,对称轴和顶点坐标;(2)根据函数图象,可以写出当y随x的增大而增大时,x的取值范围;(1)令y=0求出相应的x的值,即可得到x1的值,然后根据n≤x1≤n+1,(n为整数),即可得到n的值.【详解】解:列表:描点、连线(1)由图象可知,该抛物线开口向上,对称轴是直线x=1,顶点坐标为(1,5);(2)由图象可知,当y随x的增大而增大时,x的取值范围是x<1;(1)当y=0时,0=﹣(x﹣1)2+5,解得,,,则该抛物线与x轴的左交点为(+1,0),∵﹣1<+1<﹣2,n≤x1≤n+1,(n为整数),∴n=﹣1.【点睛】本题考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.23、(1)x1=3,x1=﹣1;(1)x1=,x1=【分析】(1)利用因式分解法求解可得;
(1)整理为一般式,再利用公式法求解可得.【详解】解:(1)原方程可以变形为(x﹣3)(x+1)=0,∴x﹣3=0,x+1=0,∴x1=3,x1=﹣1;(1)方程整理为一般式为3x1﹣6x﹣
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 校服定做加工合同范例
- 外墙翻新涂料合同范例
- 涉外合同范例之保证合同
- 政府之间合同范例
- 拍摄合同范例照
- 汽修购销合同范例
- 工厂门卫劳务合同范例
- 服装合伙合同范例标准范例
- 湖南省岳阳市岳阳县2025届高考冲刺模拟语文试题含解析
- 2025届江西省赣州市南康中学高三六校第一次联考英语试卷含解析
- 幼儿园小朋友认识医生和护士(课堂PPT)
- 汽车总线测试方案概要
- 商铺装修工程施工方案.
- 形式发票样本(Proforma Invoice)
- 草坪铺设施工方案
- 临床路径实施情况、存在问题及整改措施
- (完整word版)上海博物馆文物术语中英文对照
- 学、练、评一体化课堂模式下赛的两个问题与对策
- 陕西省尾矿资源综合利用
- 扣件式钢管脚手架施工方案(课程设计,含计算书)
- 常见药品配伍表
评论
0/150
提交评论