




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<12),连接DE,当△BDE是直角三角形时,t的值为()A.4或5 B.4或7 C.4或5或7 D.4或7或92.已知Rt△ABC,∠ACB=90º,BC=10,AC=20,点D为斜边中点,连接CD,将△BCD沿CD翻折得△B’CD,B’D交AC于点E,则的值为()A. B. C. D.3.如图,平行四边形ABCD中,E为AD的中点,已知△DEF的面积为S,则四边形ABCE的面积为(
)A.8S B.9S C.10S D.11S4.通过对《一元二次方程》全章的学习,同学们掌握了一元二次方程的三种解法:配方法、公式法、因式分解法,其实,每种解法都是把一个一元二次方程转化为两个一元一次方程来解,体现的基本思想是()A.转化 B.整体思想 C.降次 D.消元5.如图,在△ABC中,DE∥BC,DE分别交AB,AC于点D,E,若AD:DB=1:2,则△ADE与△ABC的面积之比是()A.1:3 B.1:4 C.1:9 D.1:166.某校准备修建一个面积为200平方米的矩形活动场地,它的长比宽多12米,设场地的宽为x米,根据题意可列方程为()A.x(x﹣12)=200 B.2x+2(x﹣12)=200C.x(x+12)=200 D.2x+2(x+12)=2007.用配方法解一元二次方程x2﹣6x﹣2=0,配方后得到的方程是()A.(x﹣3)2=2 B.(x﹣3)2=8 C.(x﹣3)2=11 D.(x+3)2=98.下列图形中,既是中心对称图形,又是轴对称图形的是()A.等边三角形 B.平行四边形 C.等腰三角形 D.菱形9.关于的方程的一个根是,则它的另一个根是()A. B. C. D.10.在以下四个图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.11.对于不为零的两个实数a,b,如果规定:a★b=,那么函数y=2★x的图象大致是()A. B. C. D.12.如图,AB为的直径,点C在上,若AB=4,,则O到AC的距离为()A.1 B.2 C. D.二、填空题(每题4分,共24分)13.如图,有一张矩形纸片,长15cm,宽9cm,在它的四角各剪去一个同样的小正方形,然折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是48cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为_____.14.如图,是⊙的一条弦,⊥于点,交⊙于点,连接.如果,,那么⊙的半径为_________.15.如图,⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB等于.16.如图,点A、B分别在y轴和x轴正半轴上滑动,且保持线段AB=4,点D坐标为(4,3),点A关于点D的对称点为点C,连接BC,则BC的最小值为_____.17.如图,E,F分别为矩形ABCD的边AD,BC的中点,且矩形ABCD与矩形EABF相似,AB=1,则BC的长为_____.18.已知函数的图象如图所示,若直线与该图象恰有两个不同的交点,则的取值范围为_____.三、解答题(共78分)19.(8分)解方程:(x+3)2=2x+1.20.(8分)如图,一次函数y=k1x+b的图象与x轴、y轴分别交于A,B两点,与反比例函数y=的图象分别交于C,D两点,点C(2,4),点B是线段AC的中点.(1)求一次函数y=k1x+b与反比例函数y=的解析式;(2)求△COD的面积;(3)直接写出当x取什么值时,k1x+b<.21.(8分)有六张完全相同的卡片,分两组,每组三张,在组的卡片上分别画上“√,×,√”,组的卡片上分别画上“√,×,×”,如图①所示.(1)若将卡片无标记的一面朝上摆在桌上,再分别从两组卡片中随机各抽取一张,求两张卡片上标记都是“√”的概率(请用“树形图法”或“列表法”求解).(2)若把两组卡片无标记的一面对应粘贴在一起得到三张卡片,其正、反面标记如图②所示,将卡片正面朝上摆在桌上,并用瓶盖盖住标记.①若随机揭开其中一个盖子,看到的标记是“√”的概率是多少?②若揭开盖子,看到的卡片正面标记是“√”后,猜想它的反面也是“√”,求猜对的概率.22.(10分)解方程:3(x﹣4)2=﹣2(x﹣4)23.(10分)在平面直角坐标系中,我们定义直线y=ax-a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“衍生直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“衍生三角形”.已知抛物线与其“衍生直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“衍生直线”的解析式为,点A的坐标为,点B的坐标为;(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“衍生三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“衍生直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.24.(10分)如图,反比例函数与一次函数交于和两点.(1)根据题中所给的条件,求出一次函数和反比例函数的解析式.(2)结合函数图象,指出当时,的取值范围.25.(12分)如图,已知反比例函数与一次函数的图象相交于点A、点D,且点A的横坐标为1,点D的纵坐标为-1,过点A作AB⊥x轴于点B,△AOB的面积为1.(1)求反比例函数和一次函数的解析式;(2)若一次函数y=ax+b的图像与x轴交于点C,求∠ACO的度数.(3)结合图像直接写出,当时,x的取值范围.26.如图,直线与轴交于点,与轴交于点,抛物线经过点,.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一个动点,过点M垂直于x轴的直线与直线AB和抛物线分别交于点P、N,①点在线段上运动,若以,,为顶点的三角形与相似,求点的坐标;②点在轴上自由运动,若三个点,,中恰有一点是其它两点所连线段的中点(三点重合除外),则称,,三点为“共谐点”.请直接写出使得,,三点成为“共谐点”的的值.
参考答案一、选择题(每题4分,共48分)1、D【解析】由条件可求得AB=8,可知E点的运动路线为从A到B,再从B到AB的中点,当△BDE为直角三角形时,只有∠EDB=90°或∠DEB=90°,再结合△BDE和△ABC相似,可求得BE的长,则可求得t的值.【详解】在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,∴AB=2BC=8cm,∵D为BC中点,∴BD=2cm,∵0≤t<12,∴E点的运动路线为从A到B,再从B到AB的中点,按运动时间分为0≤t≤8和8<t<12两种情况,①当0≤t≤8时,AE=tcm,BE=BC-AE=(8-t)cm,当∠EDB=90°时,则有AC∥ED,∵D为BC中点,∴E为AB中点,此时AE=4cm,可得t=4;当∠DEB=90°时,∵∠DEB=∠C,∠B=∠B,∴△BED∽△BCA,∴,即,解得t=7;②当8<t<12时,则此时E点又经过t=7秒时的位置,此时t=8+1=9;综上可知t的值为4或7或9,故选:D.【点睛】本题主要考查相似三角形的判定和性质,用t表示出线段的长,化动为静,再根据相似三角形的对应边成比例找到关于t的方程是解决这类问题的基本思路.2、A【分析】如图,过点B作BH⊥CD于H,过点E作EF⊥CD于F,由勾股定理可求AB的长,由锐角三角函数可求BH,CH,DH的长,由折叠的性质可得∠BDC=∠B'DC,S△BCD=S△DCB'=50,利用锐角三角函数可求EF=,由面积关系可求解.【详解】解:如图,过点B作BH⊥CD于H,过点E作EF⊥CD于F,∵∠ACB=90°,BC=10,AC=20,∴AB=,S△ABC=×10×20=100,∵点D为斜边中点,∠ACB=90°,∴AD=CD=BD=,∴∠DAC=∠DCA,∠DBC=∠DCB,∴sin∠BCD=sin∠DBC=,∴,∴BH=,∴CH=,∴DH=,∵将△BCD沿CD翻折得△B′CD,∴∠BDC=∠B'DC,S△BCD=S△DCB'=50,∴tan∠BDC=tan∠B'DC=,∴,∴设DF=3x,EF=4x,∵tan∠DCA=tan∠DAC=,∴,∴FC=8x,∵DF+CF=CD,∴3x+8x=,∴x=,∴EF=,∴S△DEC=×DC×EF=,∴S△CEB'=50-=,∴,故选:A.【点睛】本题考查了翻折变换,直角三角形的性质,锐角三角函数的性质,勾股定理等知识,添加恰当辅助线是本题的关键.3、B【解析】分析:由于四边形ABCD是平行四边形,那么AD∥BC,AD=BC,根据平行线分线段成比例定理的推论可得△DEF∽△BCF,再根据E是AD中点,易求出相似比,从而可求的面积,再利用与是同高的三角形,则两个三角形面积比等于它们的底之比,从而易求的面积,进而可求的面积.详解:如图所示,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△DEF∽△BCF,∴又∵E是AD中点,∴∴DE:BC=DF:BF=1:2,∴∴又∵DF:BF=1:2,∴∴∴四边形ABCE的面积=9S,故选B.点睛:相似三角形的性质:相似三角形的面积比等于相似比的平方.4、C【分析】根据“每种解法都是把一个一元二次方程转化为两个一元一次方程来解”进行判断即可.【详解】每种解法都是把一个一元二次方程转化为两个一元一次方程来解,也就是“降次”,故选:C.【点睛】本题考查一元二次方程解法的理解,读懂题意是关键.5、C【分析】根据DE∥BC,即可证得△ADE∽△ABC,然后根据相似三角形的面积的比等于相似比的平方,即可求解.【详解】解:∵AD:DB=1:2,∴AD:AB=1:3,∵DE∥BC,∴△ADE∽△ABC,∴=()2=.故选:C.【点睛】此题主要考查相似三角形的性质,解题的关键是熟知相似三角形的面积的比等于相似比的平方.6、C【解析】解:∵宽为x,长为x+12,∴x(x+12)=1.故选C.7、C【分析】根据配方法即可求出答案.【详解】∵x2﹣6x﹣2=0,∴x2﹣6x=2,∴(x﹣3)2=11,故选:C.【点睛】考查了配方法解方程,配方法的一般步骤:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.8、D【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴;中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,针对每一个选项进行分析.【详解】解:A、是轴对称图形,不是中心对称图形.故此选项错误;B、不是轴对称图形,是中心对称图形.故此选项错误;C、是轴对称图形,不是中心对称图形.故此选项错误;D、是轴对称图形,也是中心对称图形.故此选项正确;故选D.9、C【分析】根据根与系数的关系即可求出答案.【详解】由根与系数的关系可知:x1x2=−3,∴x2=−1,故选:C.【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.10、B【分析】旋转180后能够与原图形完全重合即是中心对称图形,根据轴对称图形与中心对称图形的概念求解.【详解】A、不是轴对称图形,是中心对称图形,不合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.11、C【解析】先根据规定得出函数y=2★x的解析式,再利用一次函数与反比例函数的图象性质即可求解.【详解】由题意,可得当2<x,即x>2时,y=2+x,y是x的一次函数,图象是一条射线除去端点,故A、D错误;当2≥x,即x≤2时,y=﹣,y是x的反比例函数,图象是双曲线,分布在第二、四象限,其中在第四象限时,0<x≤2,故B错误.故选:C.【点睛】本题考查了新定义,函数的图象,一次函数与反比例函数的图象性质,根据新定义得出函数y=2★x的解析式是解题的关键.12、C【分析】连接OC,BC,过点O作OD⊥AC于D,可得OD//BC,利用平行线段成比例可知和AD=,利用勾股定理,可得,列出方程,即可求出OD的长.【详解】解:连接OC,BC,过点O作OD⊥AC于D,∴∠ADO=90°,∵AB为的直径,AB=4,,∴∠ACB=90°,OA=OC=,∴OD//BC,∴,∴AD=,在中,,∴,解得OD=;故选C.【点睛】本题主要考查了平行线段成比例,勾股定理,掌握平行线段成比例,勾股定理是解题的关键.二、填空题(每题4分,共24分)13、(15﹣2x)(9﹣2x)=1.【分析】设剪去的小正方形边长是xcm,则纸盒底面的长为(15﹣2x)cm,宽为(9﹣2x)cm,根据长方形的面积公式结合纸盒的底面(图中阴影部分)面积是1cm2,即可得出关于x的一元二次方程,此题得解.【详解】解:设剪去的小正方形边长是xcm,则纸盒底面的长为(15﹣2x)cm,宽为(9﹣2x)cm,根据题意得:(15﹣2x)(9﹣2x)=1.故答案是:(15﹣2x)(9﹣2x)=1.【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系进行列方程.14、5【分析】由垂径定理可知,在中利用勾股定理即可求出半径.【详解】设⊙的半径为r∵是⊙的一条弦,⊥,∴在中∵∴∴故答案为5【点睛】本题主要考查勾股定理及垂径定理,掌握勾股定理及垂径定理的内容是解题的关键.15、45°【分析】连接AO、BO,先根据正方形的性质求得∠AOB的度数,再根据圆周角定理求解即可.【详解】连接AO、BO∵⊙O是正方形ABCD的外接圆∴∠AOB=90°∴∠APB=45°.【点睛】圆周角定理:同圆或等圆中,同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.16、1【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于1.【详解】解:如图所示,取AB的中点E,连接OE,DE,OD,由题可得,D是AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵点D坐标为(4,3),∴OD==5,∵Rt△ABO中,OE=AB=×4=2,∴当O,E,D在同一直线上时,DE的最小值等于OD﹣OE=3,∴BC的最小值等于1,故答案为:1.【点睛】本题主要考查了勾股定理,三角形三条边的关系,直角三角形斜边上中线的性质以及三角形中位线定理的运用,解决问题的关键是掌握直角三角形斜边上中线的性质以及三角形中位线定理.17、【分析】根据相似多边形的性质列出比例式,计算即可.【详解】∵矩形ABCD与矩形EABF相似,∴=,即=,解得,AD=,∴矩形ABCD的面积=AB•AD=,故答案为:.【点睛】本题考查了相似多边形的性质,掌握相似多边形的对应边的比相等是解题的关键.18、【解析】直线与有一个交点,与有两个交点,则有,时,,即可求解.【详解】解:直线与该图象恰有三个不同的交点,则直线与有一个交点,∴,∵与有两个交点,∴,,∴,∴;故答案为.【点睛】本题考查二次函数与一次函数的图象及性质;能够根据条件,数形结合的进行分析,可以确定的范围.三、解答题(共78分)19、x1=﹣3,x2=﹣1.【分析】利用因式分解法解方程即可.【详解】(x+3)2=2(x+3),(x+3)2﹣2(x+3)=0,(x+3)(x+3﹣2)=0,(x+3)(x+1)=0,∴x1=﹣3,x2=﹣1.20、(1)y1=x+2;y2=;(2)S△COD=6;(3)当0<x<2或x<﹣4时,k1x+b<.【分析】(1)把点C的坐标代入反比例函数,利用待定系数法即可求得反比例函数的解析式,作轴于E,根据题意求得B的坐标,然后利用待定系数法求得一次函数的解析式;
(2)联立方程求得D的坐标,然后根据即可求得△COD的面积;
(3)根据图象即可求得时,自变量x的取值范围.【详解】(1)∵点C(2,4)在反比例函数y=的图象上,∴,∴;如图,作CE⊥x轴于E,∵C(2,4),点B是线段AC的中点,∴B(0,2),∵B、C在的图象上,∴,解得,∴一次函数为;(2)由,解得或,∴D(﹣4,﹣2),∴;(3)由图可得,当0<x<2或x<﹣4时,.【点睛】本题考查了反比例函数和一次函数的交点问题,待定系数法求一次函数和二次函数的解析式,方程组的解以及三角形的面积等,求得B点的坐标是解题的关键.21、(1);(2)①;②【分析】(1)画出树状图计算即可;(2)①三张卡片上正面的标记有三种可能,分别为“√,×,√”,然后计算即可;②正面标记为“√”的卡片,其反面标记情况有两种可能,分别为“√”和“×”,计算即可;【详解】(1)解:根据题意,可画出如下树形图:从树形图可以看出,所有可能结果共9种,且每种结果出现的可能性相等,其中两张卡片上标记都是“√”的结果有2种,∴(两张都是“√”)(2)解:①∵三张卡片上正面的标记有三种可能,分别为“√,×,√”,∴随机揭开其中一个盖子,看到的标记是“√”的概率为.②∵正面标记为“√”的卡片,其反面标记情况有两种可能,分别为“√”和“×”,∴猜对反面也是“√”的概率为.【点睛】本题主要考查了概率的计算,准确理解题意是解题的关键.22、x1=4,x2=.【解析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】3(x﹣4)2=﹣2(x﹣4),3(x﹣4)2+2(x﹣4)=0,(x﹣4)[3(x﹣4)+2]=0,x﹣4=0,3(x﹣4)+2=0,x1=4,x2=.【点睛】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键,注意:解一元二次方程的方法有因式分解法、公式法、配方法、直接开平方法.23、(1);(-2,);(1,0);(2)N点的坐标为(0,),(0,);(3)E(-1,-)、F(0,)或E(-1,),F(-4,)【分析】(1)由抛物线的“衍生直线”知道二次函数解析式的a即可;(2)过A作AD⊥y轴于点D,则可知AN=AC,结合A点坐标,则可求出ON的长,可求出N点的坐标;(3)分别讨论当AC为平行四边形的边时,当AC为平行四边形的对角线时,求出满足条件的E、F坐标即可【详解】(1)∵,a=,则抛物线的“衍生直线”的解析式为;联立两解析式求交点,解得或,∴A(-2,),B(1,0);(2)如图1,过A作AD⊥y轴于点D,在中,令y=0可求得x=-3或x=1,∴C(-3,0),且A(-2,),∴AC=由翻折的性质可知AN=AC=,∵△AMN为该抛物线的“衍生三角形”,∴N在y轴上,且AD=2,在Rt△AND中,由勾股定理可得DN=,∵OD=,∴ON=或ON=,∴N点的坐标为(0,),(0,);(3)①当AC为平行四边形的边时,如图2,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,则有AC∥EF且AC=EF,∴∠ACK=∠EFH,在△ACK和△EFH中∴△ACK≌△EFH,∴FH=CK=1,HE=AK=,∵抛物线的对称轴为x=-1,∴F点的横坐标为0或-2,∵点F在直线AB上,∴当F点的横坐标为0时,则F(0,),此时点E在直线AB下方,∴E到y轴的距离为EH-OF=-=,即E的纵坐标为-,∴E(-1,-);当F点的横坐标为-2时,则F与A重合,不合题意,舍去;②当AC为平行四边形的对角线时,∵C(-3,0),且A(-2,),∴线段AC的中点坐标为(-2.5,),设E(-1,t),F(x,y),则x-1=2×(-2.5),y+t=,∴x=-4,y=-t,-t=-×(-4)+,解得t=,∴E(-1,),F(-4,);综上可知存在满足条件的点F,此时E(-1,-)、(0,)或E(-1,),F(-4,)【点睛】本题是对二次函数的综合知识考查,熟练掌握二次函数,几何图形及辅助线方法是解决本题的关键,属于压轴题24、(1),y=x-2;(2)或【分析】(1)根据点A的坐标即可求出反比例函数的解析式,再求出B的坐标,然后将A,B的坐标代入一次函数求出a,b,即可求出一次函数的解析式.(2)结合图象找出反比例函数在一次函数上方所对应的自变量的取值范围即可解答.【详解】解:(1)根据点的坐标可知,在反比例函数中,,∴反比例函数的解析式为.∴把点和代入,即,解得∴一次函数的解析式为.(2)观察图象可得,或.【点睛】本题考查了反比例函数与一次函数的应用,结合待定系数法求函数的解析式.25、(1),;(2)∠ACO=45°;(3)0<<1,<-2【分析】(1)由△AOB的面积为1,点A的横坐标为1,求点A的纵坐标,确定反比例函数解析式,利用反比例函数解析式求D点坐标,利用“两点法”求一次函数解析式;
(2)由一次函数解析式求C点坐标,再求AB、BC,在Rt△ABC中,求tan∠ACO的值,再求∠ACO的度数;
(3)当y1>y2时,y1的图象在y2的上面,由此求出x的取值范围.【详解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 引导幼儿园小班的团队协作与竞争意识计划
- 备考育婴师考试的策略试题及答案
- 2024年育婴师备考策略试题及答案
- 全媒体运营师行业发展试题及答案
- 2025执业兽医复习要点总结试题及答案
- 2024年图形界面设计试题及答案
- 黑龙江省佳木斯市汤原县高级中学2024-2025学年高三下期中考试(历史试题文)试题含解析
- 黑龙江省哈六中2025年全国新高三下学期开学大联考试题数学试题含解析
- 黑龙江省哈尔滨旭东中学2024-2025学年初三下学期化学试题统练(七)(期中模拟)含解析
- 黑龙江省牡丹江市绥芬河市2024-2025学年五下数学期末复习检测模拟试题含答案
- 沉淀理论课件
- 最新高三主题班会:行百里者半九十课件
- 土方回填施工记录表
- 体育调查问卷
- 公司样品标识卡
- 英语人教新起点(一起)四年级下册-Unit 3 Lesson 2 Travel plans教学设计
- SONYα300α350使用手册
- 冀教版二年级语文下册看图写话专项加深练习题含答案
- 海外专家部分项目简介
- 医疗美容主诊医师备案服务指南
- 集装箱吊装方案(共5页)
评论
0/150
提交评论