2023届山东省菏泽单县联考九年级数学第一学期期末统考模拟试题含解析_第1页
2023届山东省菏泽单县联考九年级数学第一学期期末统考模拟试题含解析_第2页
2023届山东省菏泽单县联考九年级数学第一学期期末统考模拟试题含解析_第3页
2023届山东省菏泽单县联考九年级数学第一学期期末统考模拟试题含解析_第4页
2023届山东省菏泽单县联考九年级数学第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.下列四个图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.2.如图,AB是⊙O的直径,C是⊙O上一点(A、B除外),∠BOD=44°,则∠C的度数是()A.44° B.22° C.46° D.36°3.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(,4),则△AOC的面积为A.12 B.9 C.6 D.44.若点在抛物线上,则的值()A.2021 B.2020 C.2019 D.20185.如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A处看乙楼楼顶B处仰角为30°,则甲楼高度为()A.11米 B.(36﹣15)米 C.15米 D.(36﹣10)米6.如图,若点M是y轴正半轴上的任意一点,过点M作PQ∥x轴,分别交函数y=(y>0)和y=(y>0)的图象于点P和Q,连接OP和OQ,则下列结论正确是()A.∠POQ不可能等于90°B.C.这两个函数的图象一定关于y轴对称D.△POQ的面积是7.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来谷米1534石,验得其中夹有谷粒.现从中抽取谷米一把,共数得254粒,其中夹有谷粒28粒,则这批谷米内夹有谷粒约是()A.134石 B.169石 C.338石 D.1365石8.已知反比例函数图像上三个点的坐标分别是,能正确反映的大小关系的是()A. B. C. D.9.如图,是由两个正方体组成的几何体,则该几何体的俯视图为()A. B. C. D.10.在△ABC中,∠C=90°,AB=12,sinA=,则BC等于()A. B.4 C.36 D.11.在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,在随机摸出一个球,两次都摸到黑球的概率是()A. B. C. D.12.如图,中,且,若点在反比例函数的图象上,点在反比例函数的图象上,则的值为()A. B. C. D.二、填空题(每题4分,共24分)13.一元二次方程x2﹣16=0的解是_____.14.如图,在平面直角坐标系中,点A、B的坐标分别是(0,2)、(4,0),点P是直线y=2x+2上的一动点,当以P为圆心,PO为半径的圆与△AOB的一条边所在直线相切时,点P的坐标为__________.15.反比例函数的图象在一、三象限,函数图象上有两点A(,y1,)、B(5,y2),则y1与y2,的大小关系是__________16.已知x=1是一元二次方程x2+mx+n=0的一个根,则m2+2mn+n2的值为_____.17.如图,已知函数y=ax2+bx+c(a1)的图象的对称轴经过点(2,1),且与x轴的一个交点坐标为(4,1).下列结论:①b2﹣4ac1;②当x2时,y随x增大而增大;③a﹣b+c1;④抛物线过原点;⑤当1x4时,y1.其中结论正确的是_____.(填序号)18.如图,量角器外沿上有A、B两点,它们的读数分别是70°、40°,则∠1的度数为___度.三、解答题(共78分)19.(8分)某学校打算用篱笆围成矩形的生物园饲养小兔(1)若篱笆的长为16m,怎样围可使小兔的活动范围最大;(2)求证:当矩形的周长确定时,则一边长为周长的时,矩形的面积最大.20.(8分)如图为一机器零件的三视图.(1)请写出符合这个机器零件形状的几何体的名称;(2)若俯视图中三角形为正三角形,那么请根据图中所标的尺寸,计算这个几何体的表面积(单位:cm2)21.(8分)一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:售价x(元/千克)…50607080…销售量y(千克)…100908070…(1)求y与x的函数关系式;(2)该批发商若想获得4000元的利润,应将售价定为多少元?(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?22.(10分)(l)计算:;(2)解方程.23.(10分)如图,在⊙O中,点C是的中点,弦AB与半径OC相交于点D,AB=11,CD=1.求⊙O半径的长.24.(10分)如图,在A岛周围50海里水域有暗礁,一轮船由西向东航行到O处时,发现A岛在北偏东60°方向,轮船继续正东方向航行40海里到达B处发现A岛在北偏东45°方向,该船若不改变航向继续前进,有无触礁的危险?(参考数据:)25.(12分)(1)计算:|﹣2|+(π﹣3)1+2sin61°.(2)解下列方程:x2﹣3x﹣1=1.26.某公司开发一种新的节能产品,工作人员对销售情况进行了调查,图中折线表示月销售量(件)与销售时间(天)之间的函数关系,已知线段表示函数关系中,时间每增加天,月销售量减少件,求与间的函数表达式.

参考答案一、选择题(每题4分,共48分)1、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、B【分析】根据圆周角定理解答即可.【详解】解,∵∠BOD=44°,∴∠C=∠BOD=22°,故选:B.【点睛】本题考查了圆周角定理,属于基本题型,熟练掌握圆周角定理是关键.3、B【解析】∵点,是中点∴点坐标∵在双曲线上,代入可得∴∵点在直角边上,而直线边与轴垂直∴点的横坐标为-6又∵点在双曲线∴点坐标为∴从而,故选B4、B【分析】将P点代入抛物线解析式得到等式,对等式进行适当变形即可.【详解】解:将代入中得所以.故选:B.【点睛】本题考查二次函数上点的坐标特征,等式的性质.能根据等式的性质进行适当变形是解决此题的关键.5、D【分析】分析题意可得:过点A作AE⊥BD,交BD于点E;可构造Rt△ABE,利用已知条件可求BE;而乙楼高AC=ED=BD﹣BE.【详解】解:过点A作AE⊥BD,交BD于点E,在Rt△ABE中,AE=30米,∠BAE=30°,∴BE=30×tan30°=10(米),∴AC=ED=BD﹣BE=(36﹣10)(米).∴甲楼高为(36﹣10)米.故选D.【点睛】此题主要考查三角函数的应用,解题的关键是熟知特殊角的三角函数值.6、D【分析】利用特例对A进行判断;根据反比例函数的几何意义得到S△OMQ=OM•QM=﹣k1,S△OMP=OM•PM=k2,则可对B、D进行判断;利用关于y轴对称的点的坐标特征对C进行判断.【详解】解:A、当k1=3,k2=﹣,若Q(﹣1,),P(3,),则∠POQ=90°,所以A选项错误;B、因为PQ∥x轴,则S△OMQ=OM•QM=﹣k1,S△OMP=OM•PM=k2,则=﹣,所以B选项错误;C、当k2=﹣k1时,这两个函数的图象一定关于y轴对称,所以C选项错误;D、S△POQ=S△OMQ+S△OMP=|k1|+|k2|,所以D选项正确.故选:D.【点睛】本题考查了反比例函数比例系数的几何意义:在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.7、B【解析】根据254粒内夹谷28粒,可得比例,再乘以1534石,即可得出答案.【详解】解:根据题意得:1534×≈169(石),答:这批谷米内夹有谷粒约169石;故选B.【点睛】本题考查了用样本估计总体,用样本估计总体是统计的基本思想,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.8、B【分析】根据反比例函数关系式,把-2、1、2代入分别求出,然后比较大小即可.【详解】将A、B、C三点横坐标带入函数解析式可得,∵,∴.故选:B.【点睛】本题考查反比例函数图象上点的坐标,正确利用函数表达式求点的坐标是解题关键.9、D【分析】根据俯视图是从上面看得到的图形进行求解即可.【详解】俯视图为从上往下看,所以小正方形应在大正方形的右上角,故选D.【点睛】本题考查了简单组合体的三视图,熟知俯视图是从上方看得到的图形是解题的关键.10、B【分析】根据正弦的定义列式计算即可.【详解】解:在△ABC中,∠C=90°,sinA=,∴=,解得BC=4,故选B.【点睛】本题主要考查了三角函数正弦的定义,熟练掌握定义是解题的关键.11、A【详解】解:画树状图得:∵共有4种等可能的结果,两次都摸到黑球的只有1种情况,∴两次都摸到黑球的概率是.故选A.12、D【分析】要求函数的解析式只要求出点B的坐标就可以,设点A的坐标是,过点A、B作AC⊥y轴、BD⊥y轴,分别于C、D.根据条件得到△ACO∽△ODB,利用相似三角形对应边成比例即可求得点B的坐标,问题即可得解.【详解】如图,过点A,B作AC⊥y轴,BD⊥y轴,垂足分别为C,D,设点A的坐标是,

则,

∵点A在函数的图象上,∴,∵∠AOB=90°,

∴∠AOC+∠BOD=∠AOC+∠CAO=90°,

∴∠CAO=∠BOD,

∴,∴∴,

∴,

∵点B在反比例函数的图象上,

∴.故选:D【点睛】本题是反比例函数与几何的综合,考查了求函数的解析式的问题以及相似三角形的判定和性质,能够把求反比例函数的解析式转化为求点的坐标的问题是解题的关键.二、填空题(每题4分,共24分)13、x1=﹣1,x2=1【分析】直接运用直接开平方法进行求解即可.【详解】解:方程变形得:x2=16,开方得:x=±1,解得:x1=﹣1,x2=1.故答案为:x1=﹣1,x2=1【点睛】本题考查了一元二次方程的解法,掌握直接开平方法是解答本题的关键.14、(0,2),(﹣1,0),(﹣,1).【分析】先求出点C的坐标,分为三种情况:圆P与边AO相切时,当圆P与边AB相切时,当圆P与边BO相切时,求出对应的P点即可.【详解】∵点A、B的坐标分别是(0,2)、(4,0),∴直线AB的解析式为y=-x+2,∵点P是直线y=2x+2上的一动点,∴两直线互相垂直,即PA⊥AB,且C(-1,0),当圆P与边AB相切时,PA=PO,∴PA=PC,即P为AC的中点,∴P(-,1);当圆P与边AO相切时,PO⊥AO,即P点在x轴上,∴P点与C重合,坐标为(-1,0);当圆P与边BO相切时,PO⊥BO,即P点在y轴上,∴P点与A重合,坐标为(0,2);故符合条件的P点坐标为(0,2),(-1,0),(-,1),故答案为(0,2),(-1,0),(-,1).【点睛】本题主要考查待定系数法确定一次函数关系式,一次函数的应用,及直角三角形的性质,直线与圆的位置关系,可分类3种情况圆与△AOB的三边分别相切,根据直线与圆的位置关系可求解点的坐标.15、【分析】根据反比例函数的性质,双曲线的两支分别位于第一、第三象限时k>0,在每一象限内y随x的增大而减小,可得答案.【详解】解:∵反比例函数的图象在一、三象限,∴,∴在每一象限内y随x的增大而减小,∵,∴;故答案为:.【点睛】此题主要考查了反比例函数的性质,关键是掌握反比例函数(k≠0),当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小.16、【分析】根据题意首先求出,再将所求式子因式分解,最后代入求值即可.【详解】把代入一元二次方程得,

所以.

故答案为:1.

【点睛】本题考查了一元二次方程的解及因式分解求代数式的值,明确方程的解的意义即熟练因式分解是解决问题的关键.17、①④⑤【分析】根据函数图象和二次函数的性质可以判断题目中的各个小题是否正确,从而可以解答本题.【详解】解:由函数图象可知,抛物线与轴两个交点,则,故①正确,当时,随的增大而减小,故②错误,当时,,故③错误,由函数的图象的对称轴经过点,且与轴的一个交点坐标为,则另一个交点为,故④正确,当时,,故⑤正确,故答案为:①④⑤.【点睛】本题考查二次函数图象与系数的关系、抛物线与轴的交点,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.18、15【分析】圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.【详解】解:∵∠AOB=70°-40°=30°∴∠1=∠AOB=15°故答案为:15°.【点睛】本题考查圆周角定理.三、解答题(共78分)19、(1)4;(2)证明见详解.【分析】(1)设长为x,面积为y,利用矩形的面积求法得出y与x之间的函数关系式进行分析即可;(2)设周长为4m,一边长为x,面积为y,列出关系式进行验证求证即可.【详解】解:(1)长为x,宽为8-x,列关系式为,配方可得,可得当x=4时,面积y取最大值;(2)设周长为4m,一边长为x,列出函数关系式即可知当x=m时,即一边长为周长的时,矩形的面积最大.【点睛】本题主要考查了二次函数的应用,正确得出函数关系式是解题关键.20、(1)直三棱柱;(2)【解析】试题分析:(1)有2个视图的轮廓是长方形,那么这个几何体为棱柱,另一个视图是三角形,那么该几何体为三棱柱;(2)根据正三角形一边上的高可得正三角形的边长,表面积=侧面积+2个底面积=底面周长×高+2个底面积.试题解析:(1)符合这个零件的几何体是直三棱柱;(2)如图,△ABC是正三角形,CD⊥AB,CD=2,,在Rt△ADC中,,解得AC=4,∴S表面积=4×2×3+2××4×2=(24+8)(cm2).21、(1)y与x的函数关系式为y=-x+150;(2)该批发商若想获得4000元的利润,应将售价定为70元;(3)该产品每千克售价为85元时,批发商获得的利润w(元)最大,此时的最大利润为1元.【分析】(1)根据图表中的各数可得出y与x成一次函数关系,从而结合图表的数可得出y与x的关系式;(2)根据想获得4000元的利润,列出方程求解即可;(3)根据批发商获得的总利润w(元)=售量×每件利润可表示出w与x之间的函数表达式,再利用二次函数的最值可得出利润最大值.【详解】(1)设y与x的函数关系式为y=kx+b(k≠0),根据题意得,解得,故y与x的函数关系式为y=-x+150;(2)根据题意得(-x+150)(x-20)=4000,解得x1=70,x2=100>90(不合题意,舍去).故该批发商若想获得4000元的利润,应将售价定为70元;(3)w与x的函数关系式为:w=(-x+150)(x-20)=-x2+170x-3000=-(x-85)2+1,∵-1<0,∴当x=85时,w值最大,w最大值是1.∴该产品每千克售价为85元时,批发商获得的利润w(元)最大,此时的最大利润为1元.22、(1);(2)【分析】(1)原式利用平方差公式和单项式乘以多项式把括号展开,再合并同类项即可得到答案;(2)方程变形后分解因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】(1),==;(2)∴,解得,.【点睛】此题主要考查了一元二次方程的解法,正确掌握解题方法是解题的关键,同时还考查了实数和混合运算.23、2【解析】试题分析:连接OA,根据垂径定理求出AD=6,∠ADO=90°,根据勾股定理得出方程,求出方程的解即可.试题解析:连接AO,∵点C是弧AB的中点,半径OC与AB相交于点D,∴OC⊥AB,∵AB=11,∴AD=BD=6,设⊙O的半径为r,∵CD=1,∴在Rt△AOD中,由勾股定理得:AD1=OD1+AD1,即:r1=(r﹣1)1+61,∴r=2,答:⊙O的半径长为2.24、无触礁的危险.【分析】根据已知条件解直角三角形OAC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论