2023届青海省西宁市第二十一中学九年级数学第一学期期末统考试题含解析_第1页
2023届青海省西宁市第二十一中学九年级数学第一学期期末统考试题含解析_第2页
2023届青海省西宁市第二十一中学九年级数学第一学期期末统考试题含解析_第3页
2023届青海省西宁市第二十一中学九年级数学第一学期期末统考试题含解析_第4页
2023届青海省西宁市第二十一中学九年级数学第一学期期末统考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,在⊙O中,若点C是的中点,∠A=50°,则∠BOC=()A.40° B.45° C.50° D.60°2.若关于x的不等式组无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥33.方程x2+2x-5=0经过配方后,其结果正确的是A. B.C. D.4.如图,四边形ABCD是正方形,延长BC到E,使,连接AE交CD于点F,则()A.67.5° B.65° C.55° D.45°5.在下列图形中,既是中心对称图形又是轴对称图形的是()A.等边三角形 B.圆 C.等腰梯形 D.直角三角形6.如图,⊙O的半径为6,直径CD过弦EF的中点G,若∠EOD=60°,则弦CF的长等于()A.6 B.6 C.3 D.97.三角形的一条中位线将这个三角形分成的一个小三角形与原三角形的面积之比等于()A.1: B.1:2 C.1:4 D.1:1.68.如图,已知▱ABCD中,E是边AD的中点,BE交对角线AC于点F,那么S△AFE:S四边形FCDE为()A.1:3 B.1:4 C.1:5 D.1:69.如图,在正方形纸片ABCD中,E,F分别是AD,BC的中点,沿过点B的直线折叠,使点C落在EF上,落点为N,折痕交CD边于点M,BM与EF交于点P,再展开.则下列结论中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等边三角形.正确的有()A.1个 B.2个 C.3个 D.4个10.在Rt△ABC中,∠C=90°,sinA=,则cosB的值等于()A. B. C. D.二、填空题(每小题3分,共24分)11.已知是关于x的一元二次方程的一个解,则此方程的另一个解为____.12.函数是关于的二次函数,且抛物线的开口向上,则的值为____________.13.二次函数图象的开口向__________.14.菱形的两条对角线分别是,,则菱形的边长为________,面积为________.15.计算:cos245°-tan30°sin60°=______.16.某地区2017年投入教育经费2500万元,2019年计划投入教育经费3025万元,则2017年至2019年,该地区投入教育经费的年平均增长率为_____.17.如图是抛物线图象的一部分,抛物线的顶点坐标为,与轴的一个交点为,点和点均在直线上.①;②;③抛物线与轴的另一个交点时;④方程有两个不相等的实数根;⑤;⑥不等式的解集为.上述六个结论中,其中正确的结论是_____________.(填写序号即可)18.要使二次根式有意义,则的取值范围是________.三、解答题(共66分)19.(10分)某学校为了美化校园环境,向园林公司购买一批树苗.公司规定:若购买树苗不超过60棵,则每棵树售价120元;若购买树苗超过60棵,则每增加1棵,每棵树售价均降低0.5元,且每棵树苗的售价降到100元后,不管购买多少棵树苗,每棵售价均为100元.(1)若该学校购买50棵树苗,求这所学校需向园林公司支付的树苗款;(2)若该学校向园林公司支付树苗款8800元,求这所学校购买了多少棵树苗.20.(6分)为了创建文明城市,增强学生的环保意识.随机抽取8名学生,对他们的垃圾分类投放情况进行调查,这8名学生分别标记为,其中“√”表示投放正确,“×”表示投放错误,统计情况如下表.学生垃圾类别厨余垃圾√√√√√√√√可回收垃圾√×√××√√√有害垃圾×√×√√××√其他垃圾×√√××√√√(1)求8名学生中至少有三类垃圾投放正确的概率;(2)为进一步了解垃圾分类投放情况,现从8名学生里“有害垃圾”投放错误的学生中随机抽取两人接受采访,试用标记的字母列举所有可能抽取的结果.21.(6分)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,求折痕AB的长.22.(8分)对于平面直角坐标系中,已知点A(-2,0)和点B(3,0),线段AB和线段AB外的一点P,给出如下定义:若45°≤∠APB≤90°时,则称点P为线段AB的可视点,且当PA=PB时,称点P为线段AB的正可视点.图1备用图(1)①如图1,在点P1(3,6),P2(-2,-5),P3(2,2)中,线段AB的可视点是;②若点P在y轴正半轴上,写出一个满足条件的点P的坐标:__________.(2)在直线y=x+b上存在线段AB的可视点,求b的取值范围;(3)在直线y=-x+m上存在线段AB的正可视点,直接写出m的取值范围.23.(8分)如图,AB是⊙O的直径,点C是AB延长线上的点,CD与⊙O相切于点D,连结BD、AD.(1)求证;∠BDC=∠A.(2)若∠C=45°,⊙O的半径为1,直接写出AC的长.24.(8分)如图,已知AB是⊙O的直径,AC为弦,且平分∠BAD,AD⊥CD,垂足为D.(1)求证:CD是⊙O的切线;(2)若⊙O的直径为4,AD=3,试求∠BAC的度数.25.(10分)一个不透明的口袋中装有4个完全相同的小球,分别标有数字1,2,3,4,另有一个可以自由旋转的圆盘,被分成面积相等的3个扇形区域,分别标有数字1,2,3(如图所示).小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.(1)用树状图法或列表法求出小颖参加比赛的概率;(2)你认为游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.26.(10分)如图,四边形是平行四边形,,,点为边的中点,点在的延长线上,且.点在线段上,且,垂足为.(1)若,且,,求的长;(2)求证:.

参考答案一、选择题(每小题3分,共30分)1、A【解析】试题解析:∵点C是的中点,故选A.点睛:垂直于弦的直径,平分弦并且平分弦所对的两条弧.2、A【解析】利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可.【详解】∵不等式组无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选A.【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.3、C【详解】解:根据配方法的意义,可知在方程的两边同时加减一次项系数的一半的平方,可知,即,配方为.故选:C.【点睛】此题主要考查了配方法,解题关键是明确一次项的系数,然后在方程的两边同时加减一次项系数的一半的平方,即可求解.4、A【分析】由三角形及正方形对角线相互垂直平分相等的性质进行计算求解,把各角之间关系找到即可求解.【详解】解:∵四边形ABCD是正方形,CE=CA,∴∠ACE=45°+90°=135°,∠E=22.5°,∴∠AFD=90°-22.5°=67.5°,故选A.【点睛】主要考查到正方形的性质,等腰三角形的性质和外角与内角之间的关系.这些性质要牢记才会灵活运用.5、B【分析】根据轴对称图形与中心对称图形的概念对各选项分析判断即可.【详解】解:A、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;B、圆是轴对称图形,也是中心对称图形,故本选项正确;C、等腰梯形是轴对称图形,不是中心对称图形,故本选项错误;D、直角三角形不一定是轴对称图形,也不是中心对称图形,故本选项错误;故选B.【点睛】本题考查了轴对称图形与中心对称图形,识别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,识别中心对称图形的关键是寻找对称中心,旋转180°后与原图重合.6、B【分析】连接DF,根据垂径定理得到,得到∠DCF=∠EOD=30°,根据圆周角定理、余弦的定义计算即可.【详解】解:连接DF,∵直径CD过弦EF的中点G,∴,∴∠DCF=∠EOD=30°,∵CD是⊙O的直径,

∴∠CFD=90°,

∴CF=CD•cos∠DCF=12×=,故选B.【点睛】本题考查的是垂径定理的推论、解直角三角形,掌握平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解题的关键.7、C【分析】中位线将这个三角形分成的一个小三角形与原三角形相似,根据中位线定理,可得两三角形的相似比,进而求得面积比.【详解】根据三角形中位线性质可得,小三角形与原三角形相似比为1:2,则其面积比为:1:4,故选C.【点睛】本题考查了三角形中位线的性质,比较简单,关键是知道面积比等于相似比的平方.8、C【解析】根据AE∥BC,E为AD中点,找到AF与FC的比,则可知△AEF面积与△FCE面积的比,同时因为△DEC面积=△AEC面积,则可知四边形FCDE面积与△AEF面积之间的关系.【详解】解:连接CE,∵AE∥BC,E为AD中点,

∴.

∴△FEC面积是△AEF面积的2倍.

设△AEF面积为x,则△AEC面积为3x,

∵E为AD中点,

∴△DEC面积=△AEC面积=3x.

∴四边形FCDE面积为1x,

所以S△AFE:S四边形FCDE为1:1.

故选:C.【点睛】本题考查相似三角形的判定和性质、平行四边形的性质,解题关键是通过线段的比得到三角形面积的关系.9、C【解析】∵△BMN是由△BMC翻折得到的,∴BN=BC,又点F为BC的中点,在Rt△BNF中,sin∠BNF=,∴∠BNF=30°,∠FBN=60°,∴∠ABN=90°-∠FBN=30°,故②正确;在Rt△BCM中,∠CBM=∠FBN=30°,∴tan∠CBM=tan30°=,∴BC=CM,AB2=3CM2故③正确;∠NPM=∠BPF=90°-∠MBC=60°,∠NMP=90°-∠MBN=60°,∴△PMN是等边三角形,故④正确;由题给条件,证不出CM=DM,故①错误.故正确的有②③④,共3个.故选C.10、B【解析】在Rt△ABC中,∠C=90°,∠A+∠B=90°,则cosB=sinA=.故选B.点睛:本题考查了互余两角三角函数的关系.在直角三角形中,互为余角的两角的互余函数相等.二、填空题(每小题3分,共24分)11、【分析】将x=-3代入原方程,解一元二次方程即可解题.【详解】解:将x=-3代入得,a=-1,∴原方程为,解得:x=1或-3,【点睛】本题考查了含参的一元二次方程的求解问题,属于简单题,熟悉概念是解题关键.12、【分析】由题意根据题意列出关于m的不等式组,求出m的值即可.【详解】解:∵函数是关于x的二次函数,且抛物线的开口向上,∴,解得m=-1.故答案为-1.【点睛】本题考查的是二次函数的定义,熟知一般地形如y=ax1+bx+c(a、b、c是常数,a≠0)的函数叫做二次函数是解答此题的关键.13、下【分析】根据二次函数的二次项系数即可判断抛物线的开口方向.【详解】解:∵,二次项系数a=-6,∴抛物线开口向下,故答案为:下.【点睛】本题考查二次函数的性质.对于二次函数y=ax2+bx+c(a≠0),当a>0时,抛物线开口向上,当a<0时,抛物线开口向下.14、【分析】根据菱形的对角线互相垂直平分求出两对角线的一半,然后利用勾股定理求出菱形的边长,再根据菱形的面积等于对角线乘积的一半求菱形的面积即可.【详解】∵菱形的两条对角线长分别为6cm,8cm,∴对角线的一半分别为3cm,4cm,∴根据勾股定理可得菱形的边长为:=5cm,∴面积S=×6×8=14cm1.故答案为5;14.【点睛】本题考查了菱形的性质及勾股定理的应用,熟记菱形的性质是解决本题的关键.15、0【分析】直接利用特殊角的三角函数值代入进而得出答案.【详解】=.故答案为0.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.16、10%【解析】设年平均增长率为x,则经过两次变化后2019年的经费为2500(1+x)2;2019年投入教育经费3025万元,建立方程2500(1+x)2=3025,求解即可.【详解】解:设年平均增长率为x,得2500(1+x)2=3025,解得x=0.1=10%,或x=-2.1(不合题意舍去).所以2017年到2019年该地区投入教育经费的年平均增长率为10%.【点睛】本题考查一元二次方程的应用--求平均变化率的方法,能够列出式子是解答本题的关键.17、①④【分析】①由对称轴x=1判断;②根据图象确定a、b、c的符号;③根据对称轴以及B点坐标,通过对称性得出结果;③根据的判别式的符号确定;④比较x=1时得出y1的值与x=4时得出y2值的大小即可;⑤由图象得出,抛物线总在直线的下面,即y2>y1时x的取值范围即可.【详解】解:①因为抛物线的顶点坐标A(1,3),所以对称轴为:x=1,则-=1,2a+b=0,故①正确;

②∵抛物线开口向下,∴a<0,∵对称轴在y轴右侧,∴b>0,∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,故②不正确;

③∵抛物线对称轴为x=1,抛物线与x轴的交点B的坐标为(4,0),∴根据对称性可得,抛物线与x轴的另一个交点坐标为(-2,0),故③不正确;④∵抛物线与x轴有两个交点,∴b2-4ac>0,∴的判别式,=b2-4a(c+3)=b2-4ac-12a,又a<0,∴-12a>0,∴=b2-4ac-12a>0,故④正确;⑤当x=-1时,y1=a-b+c>0;当x=4时,y2=4m+n=0,∴a-b+c>4m+n,故⑤不正确;

⑥由图象得:的解集为x<1或x>4;故⑥不正确;

则其中正确的有:①④.

故答案为:①④.【点睛】本题选项较多,比较容易出错,因此要认真理解题意,明确以下几点是关键:①通常2a+b的值都是利用抛物线的对称轴来确定;②抛物线与x轴的交点个数确定其△的值,即b2-4ac的值:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点;③知道对称轴和抛物线的一个交点,利用对称性可以求与x轴的另一交点.18、x≥1【分析】根据二次根式被开方数为非负数进行求解.【详解】由题意知,,解得,x≥1,故答案为:x≥1.【点睛】本题考查二次根式有意义的条件,二次根式中的被开方数是非负数.三、解答题(共66分)19、(1)这所学校需向园林公司支付的树苗款为6000元;(2)这所中学购买了80棵树苗.【分析】(1)由题意按照每棵120元进行计算;(2)设设购买了棵树苗,根据单价×数量=总价列方程,求解.【详解】解:(1)∵,∴(元),∴答:这所学校需向园林公司支付的树苗款为6000元.(2)∵购买60棵树苗时所需支付的树苗款为元元,∴该中学购买的树苗超过60棵.又∵,∴购买100棵树苗时每棵树苗的售价恰好降至100元.∵购买树苗超过100棵后,每棵树苗的售价仍为100元,此时所需支付的树苗款超过10000元,而,∴该中学购买的树苗不超过100棵.设购买了棵树苗,依题意,得,化简,得,解得(舍去),.答:这所中学购买了80棵树苗.【点睛】本题考查一元二次方程的实际应用,理解题意弄清题目中的等量关系是本题的解题关键.20、(1)8名学生中至少有三类垃圾投放正确的概率为;(2)列表见解析.【解析】直接利用概率公式求解可得;

抽取两人接受采访,故利用列表法可得所有等可能结果.【详解】解:(1)8名学生中至少有三类垃圾投放正确有5人,故至少有三类垃圾投放正确的概率为;(2)列表如下:【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件用到的知识点为:概率所求情况数与总情况数之比.21、AB=2cm【分析】在图中构建直角三角形,先根据勾股定理得AD的长,再根据垂径定理得AB的长.【详解】解:如图:作OD⊥AB于D,连接OA.根据题意得:OD=OA=1cm,再根据勾股定理得:AD===cm,由垂径定理得:AB=2cm.【点睛】本题考查了垂径定理,根据题意构造垂径、应用勾股定理是解答本题的关键.22、(1)①线段AB的可视点是,;②点P的坐标:P(0,3)(答案不唯一,纵坐标范围:≤≤6);(2)b的取值范围是:-8≤b≤1;(3)m的取值范围:或【分析】(1)根据题意画出图形,进一步即可得出结论;(2)正确画出相关图形进一步证明即可;(3)根据题意,正确画出图形,根据相关量之间的关系进一步求解即可.【详解】(1)①线段AB的可视点是,.②点P的坐标:P(0,3)(答案不唯一,纵坐标范围:≤≤6).(2)如图,直线与⊙相切时,BD是⊙直径∴BD=.∵BE=,∴DE=.∴EF==4.∴F(0,1)同理可得,直线与⊙相切时,G(0,-8)∴b的取值范围是:-8≤b≤1.(3)m的取值范围:或【点睛】本题主要考查了圆的性质的综合运用,熟练掌握相关概念是解题关键,23、(1)详见解析;(2)1+【解析】(1)连接OD,结合切线的性质和直径所对的圆周角性质,利用等量代换求解(2)根据勾股定理先求OC,再求AC.【详解】(1)证明:连结.如图,与相切于点D,是的直径,即(2)解:在中,.【点睛】此题重点考查学生对圆的认识,熟练掌握圆的性质是解题的关键.24、(1)证明见解析;(2)30°.【解析】(1)连接OC,证先利用角平分线的定义和等腰三角形的性质证明∠OCA=∠DAC,从而OC∥AD,由平行线的性质可得OC⊥CD,从而得出CD是⊙O切线;(2)连接BC,证明△ACB∽△ADC,求出AC的长度,再求出∠BAC的余弦,得出∠BAC的度数.【详解】解:(1)连结OC.∵平分,∴∠BAC=∠DAC.又OA=OC,∴∠BAC=∠OCA,∴∠OCA=∠DAC,∴OC∥AD.∵AD⊥CD,∴OC⊥CD,∴CD是⊙O的切线.(2)连结BC.∵AB是⊙

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论