2023届内蒙古自治区赤峰市翁牛特旗乌敦套海中学数学九上期末调研试题含解析_第1页
2023届内蒙古自治区赤峰市翁牛特旗乌敦套海中学数学九上期末调研试题含解析_第2页
2023届内蒙古自治区赤峰市翁牛特旗乌敦套海中学数学九上期末调研试题含解析_第3页
2023届内蒙古自治区赤峰市翁牛特旗乌敦套海中学数学九上期末调研试题含解析_第4页
2023届内蒙古自治区赤峰市翁牛特旗乌敦套海中学数学九上期末调研试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.二次函数y=(x﹣4)2+2图象的顶点坐标是()A.(﹣4,2) B.(4,﹣2) C.(4,2) D.(﹣4,﹣2)2.点C为线段AB的黄金分割点,且AC>BC,下列说法正确的有()①AC=AB,②AC=AB,③AB:AC=AC:BC,④AC≈0.618ABA.1个 B.2个 C.3个 D.4个3.如图,A、D是⊙O上的两个点,BC是直径,若∠D=35°,则∠OAC的度数是()A.35° B.55° C.65° D.70°4.某校准备修建一个面积为200平方米的矩形活动场地,它的长比宽多12米,设场地的宽为x米,根据题意可列方程为()A.x(x﹣12)=200 B.2x+2(x﹣12)=200C.x(x+12)=200 D.2x+2(x+12)=2005.如果,那么的值等于()A. B. C. D.6.若将半径为6cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是()A.1cm B.2cm C.3cm D.4cm7.“黄金分割”是一条举世公认的美学定律.例如在摄影中,人们常依据黄金分割进行构图,使画面整体和谐.目前,照相机和手机自带的九宫格就是黄金分割的简化版.要拍摄草坪上的小狗,按照黄金分割的原则,应该使小狗置于画面中的位置()A.① B.② C.③ D.④8.如图,已知⊙O的半径为4,四边形ABCD为⊙O的内接四边形,且AB=4,AD=4,则∠BCD的度数为()A.105° B.115° C.120° D.135°9.太阳与地球之间的平均距离约为150000000km,用科学记数法表示这一数据为()A.1.5×108km B.15×107km C.0.15×109km D.1.5×109km10.如图,在正方形中,分别为的中点,交于点,连接,则()A.1:8 B.2:15 C.3:20 D.1:611.如图,AB,AM,BN分别是⊙O的切线,切点分别为P,M,N.若MN∥AB,∠A=60°,AB=6,则⊙O的半径是()A. B.3 C. D.12.抛物线y=ax2+bx+c与直线y=ax+c(a≠0)在同一直角坐标系中的图象可能是()A. B.C. D.二、填空题(每题4分,共24分)13.平行于梯形两底的直线截梯形的两腰,当两交点之间的线段长度是两底的比例中项时,我们称这条线段是梯形的“比例中线”.在梯形ABCD中,AD//BC,AD=4,BC=9,点E、F分别在边AB、CD上,且EF是梯形ABCD的“比例中线”,那么=_____.14.若关于x的一元二次方程x22x+m=0有实数根,则实数m的取值范围是______.15.如果将抛物线向上平移,使它经过点,那么所得新抛物线的表达式是_______________.16.抛物线y=﹣x2+bx+c的部分图象如图所示,已知关于x的一元二次方程﹣x2+bx+c=0的一个解为x1=1,则该方程的另一个解为x2=_____.17.请写出一个开口向下,且与y轴的交点坐标为(0,4)的抛物线的表达式_____.18.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步560米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则a=______.三、解答题(共78分)19.(8分)如图,△ABC中,AB=AC=10,BC=6,求sinB的值.20.(8分)对任意一个三位数,如果满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为.例如,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和,,所以.(1)计算:,;(2)小明在计算时发现几个结果都为正整数,小明猜想所有的均为正整数,你觉得这个猜想正确吗?请判断并说明理由;(3)若,都是“相异数”,其中,(,,、都是正整数),当时,求的最大值.21.(8分)在平面直角坐标系中,我们定义直线y=ax-a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“衍生直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“衍生三角形”.已知抛物线与其“衍生直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“衍生直线”的解析式为,点A的坐标为,点B的坐标为;(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“衍生三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“衍生直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.22.(10分)如图,已知,直线垂直平分交于,与边交于,连接,过点作平行于交于点,连.(1)求证:;(2)求证:四边形是菱形;(3)若,求菱形的面积.23.(10分)如图,在Rt△ABC中,∠BAC=90°,AB=AC.在平面内任取一点D,连结AD(AD<AB),将线段AD绕点A逆时针旋转90°,得到线段AE,连结DE,CE,BD.(1)请根据题意补全图1;(2)猜测BD和CE的数量关系并证明;(3)作射线BD,CE交于点P,把△ADE绕点A旋转,当∠EAC=90°,AB=2,AD=1时,补全图形,直接写出PB的长.24.(10分)已知关于的一元二次方程有两个实数根,.(1)求的取值范围:(2)当时,求的值.25.(12分)如图,在中,,,垂足分别为,与相交于点.(1)求证:;(2)当时,求的长.26.2019年4月23日是第二十四个“世界读书日“.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)求本次比赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.

参考答案一、选择题(每题4分,共48分)1、C【分析】利用二次函数顶点式可直接得到抛物线的顶点坐标.【详解】解:∵y=(x﹣4)2+2,∴顶点坐标为(4,2),故答案为C.【点睛】本题考查了二次函数的顶点式,掌握顶点式各参数的含义是解答本题的关键.2、C【解析】根据黄金分割的概念和黄金比值进行解答即可得.【详解】∵点C数线段AB的黄金分割点,且AC>BC,∴AC=AB,故①正确;由AC=AB,故②错误;BC:AC=AC:AB,即:AB:AC=AC:BC,③正确;AC≈0.618AB,故④正确,故选C.【点睛】本题考查了黄金分割,理解黄金分割的概念,熟记黄金分割的比为是解题的关键.3、B【解析】解:∵∠D=35°,∴∠AOC=2∠D=70°,∴∠OAC=(180°-∠AOC)÷2=110°÷2=55°.故选B.4、C【解析】解:∵宽为x,长为x+12,∴x(x+12)=1.故选C.5、D【分析】依据,即可得到a=b,进而得出的值.【详解】∵,∴3a﹣3b=5b,∴3a=8b,即a=b,∴==.故选D.【点睛】本题考查了比例的性质,解决问题的关键是运用内项之积等于外项之积.6、C【分析】根据圆锥的底面圆周长是扇形的弧长列式求解即可.【详解】设圆锥的底面半径是r,由题意得,,∴r=3cm.故选C.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.7、B【解析】黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值约为0.618,观察图中的位置可知应该使小狗置于画面中②的位置,故选B.8、A【分析】作OE⊥AB于E,OF⊥AD于F,连接OA,如图,利用垂径定理和解直角三角形的知识分别在Rt△AOE和Rt△AOF中分别求出∠OAE和∠OAF的度数,进而可得∠EAF的度数,然后利用圆内接四边形的性质即可求得结果.【详解】解:作OE⊥AB于E,OF⊥AD于F,连接OA,如图,则AE=AB=2,AF=AD=2,在Rt△AOE中,∵cos∠OAE=,∴∠OAE=30°,在Rt△AOF中,∵cos∠OAF=,∴∠OAF=45°,∴∠EAF=30°+45°=75°,∵四边形ABCD为⊙O的内接四边形,∴∠C=180°﹣∠BAC=180°﹣75°=105°.故选:A.【点睛】本题考查了垂径定理、解直角三角形和圆内接四边形的性质等知识,属于常考题型,熟练掌握上述基本知识是解题的关键.9、A【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于150000000有9位,所以可以确定n=9-1=1.【详解】150000000km=1.5×101km.故选:A.【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.10、A【分析】延长交延长线于点,可证,,,【详解】解:延长交延长线于点在与中故选A【点睛】本题考查了相似三角形的性质.11、D【分析】根据题意可判断四边形ABNM为梯形,再由切线的性质可推出∠ABN=60°,从而判定△APO≌△BPO,可得AP=BP=3,在直角△APO中,利用三角函数可解出半径的值.【详解】解:连接OP,OM,OA,OB,ON∵AB,AM,BN分别和⊙O相切,∴∠AMO=90°,∠APO=90°,∵MN∥AB,∠A=60°,∴∠AMN=120°,∠OAB=30°,∴∠OMN=∠ONM=30°,∵∠BNO=90°,∴∠ABN=60°,∴∠ABO=30°,在△APO和△BPO中,,△APO≌△BPO(AAS),∴AP=AB=3,∴tan∠OAP=tan30°==,∴OP=,即半径为.故选D.【点睛】本题考查了切线的性质,切线长定理,解直角三角形,全等三角形的判定和性质,关键是说明点P是AB中点,难度不大.12、D【分析】可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致.【详解】A.一次函数y=ax+c与y轴交点应为(0,c),二次函数y=ax2+bx+c与y轴交点也应为(0,c),图象不符合,故本选项错误;B.由抛物线可知,a>0,由直线可知,a<0,a的取值矛盾,故本选项错误;C.由抛物线可知,a<0,由直线可知,a>0,a的取值矛盾,故本选项错误;D.由抛物线可知,a<0,由直线可知,a<0,且抛物线与直线与y轴的交点相同,故本选项正确.故选:D.【点睛】本题考查了抛物线和直线的性质,用假设法来解答这种数形结合题是一种很好的方法.二、填空题(每题4分,共24分)13、【分析】先利用比例中线的定义,求出EF的长度,然后由梯形ADFE相似与梯形EFCB,得到,即可得到答案.【详解】解:如图,∵EF是梯形的比例中线,∴,∴,∵AD//BC,∴梯形ADFE相似与梯形EFCB,∴;故答案为:.【点睛】本题考查了相似四边形的性质,以及比例中项的定义,解题的关键是熟练掌握相似四边形的性质和比例中线的性质.14、m≤1【分析】利用判别式的意义得到,然后解不等式即可.【详解】解:根据题意得,

解得.

故答案为:.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.15、【解析】试题解析:设平移后的抛物线解析式为y=x2+2x-1+b,把A(0,1)代入,得1=-1+b,解得b=4,则该函数解析式为y=x2+2x+1.考点:二次函数图象与几何变换.16、﹣1【分析】函数的对称轴为:x=-1,由抛物线与x轴交点是关于对称轴的对称即可得到答案.【详解】解:函数的对称轴为:x=-1,其中一个交点坐标为(1,0),

则另外一个交点坐标为(-1,0),

故答案为-1.【点睛】本题考查了抛物线与x轴的交点,根据函数的对称性即可求解.17、y=﹣x2+4.【解析】试题解析:开口向下,则y轴的交点坐标为这个抛物线可以是故答案为18、1【分析】由图可知,甲2秒跑了8米,可以求出甲的速度,根据乙100秒跑完了全程可知乙的速度,根据经过时间a秒,乙追上了甲,可列出方程解出a的值.【详解】解:由图象可得:甲的速度为8÷2=4米/秒,根据乙100秒跑完了全程可知乙的速度为:160÷100=1.6米/秒,经过a秒,乙追上甲,可列方程,∴,故答案为:1.【点睛】本题考查了行程问题中的数量关系的应用,追及问题在生活中的应用,认真分析函数图象的实际意义是解题的关键.三、解答题(共78分)19、【分析】过点A作于D,根据等腰三角形的三线合一性质求出根据勾股定理求出,最后用正弦的定义即可.【详解】解:过点A作于D,又∵△ABC中,AB=AC=10,BC=6,∴,.∴.【点睛】本题考查了等腰三角形的三线合一性质、勾股定理、锐角三角函数的定义,构造直角三角形是解题的关键.20、(1)10;12.(2)猜想正确.理由见解析;(3).【分析】(1)根据“相异数”的定义即可求解;(2)设的三个数位数字分别为,,,根据“相异数”的定义列出即可求解;(3)根据,都是“相异数”,得到,,根据求出x,y的值即可求解.【详解】(1);.(2)猜想正确.设的三个数位数字分别为,,,即,.因为,,均为正整数,所以任意为正整数.(3)∵,都是“相异数”,∴;.∵,∴,∴,∵,,且,都是正整数,∴或或或,∵是“相异数”,∴;∵是“相异数”,∴,∴满足条件的有,或,或,∴或或,∴的最大值为.【点睛】本题考查因式分解的应用;理解题意,从题目中获取信息,列出正确的代数式,再由数的特点求解是解题的关键.21、(1);(-2,);(1,0);(2)N点的坐标为(0,),(0,);(3)E(-1,-)、F(0,)或E(-1,),F(-4,)【分析】(1)由抛物线的“衍生直线”知道二次函数解析式的a即可;(2)过A作AD⊥y轴于点D,则可知AN=AC,结合A点坐标,则可求出ON的长,可求出N点的坐标;(3)分别讨论当AC为平行四边形的边时,当AC为平行四边形的对角线时,求出满足条件的E、F坐标即可【详解】(1)∵,a=,则抛物线的“衍生直线”的解析式为;联立两解析式求交点,解得或,∴A(-2,),B(1,0);(2)如图1,过A作AD⊥y轴于点D,在中,令y=0可求得x=-3或x=1,∴C(-3,0),且A(-2,),∴AC=由翻折的性质可知AN=AC=,∵△AMN为该抛物线的“衍生三角形”,∴N在y轴上,且AD=2,在Rt△AND中,由勾股定理可得DN=,∵OD=,∴ON=或ON=,∴N点的坐标为(0,),(0,);(3)①当AC为平行四边形的边时,如图2,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,则有AC∥EF且AC=EF,∴∠ACK=∠EFH,在△ACK和△EFH中∴△ACK≌△EFH,∴FH=CK=1,HE=AK=,∵抛物线的对称轴为x=-1,∴F点的横坐标为0或-2,∵点F在直线AB上,∴当F点的横坐标为0时,则F(0,),此时点E在直线AB下方,∴E到y轴的距离为EH-OF=-=,即E的纵坐标为-,∴E(-1,-);当F点的横坐标为-2时,则F与A重合,不合题意,舍去;②当AC为平行四边形的对角线时,∵C(-3,0),且A(-2,),∴线段AC的中点坐标为(-2.5,),设E(-1,t),F(x,y),则x-1=2×(-2.5),y+t=,∴x=-4,y=-t,-t=-×(-4)+,解得t=,∴E(-1,),F(-4,);综上可知存在满足条件的点F,此时E(-1,-)、(0,)或E(-1,),F(-4,)【点睛】本题是对二次函数的综合知识考查,熟练掌握二次函数,几何图形及辅助线方法是解决本题的关键,属于压轴题22、(1)证明见解析;(2)证明见解析;(3)24.【分析】(1)根据线段垂直平分线的性质即可得出答案;(2)先判定AECF是平行四边形,根据对角线垂直,即可得出答案;(3)根据勾股定理求出DE的值,根据“菱形的面积等于对角线乘积的一半”计算即可得出答案.【详解】(1)证明:由图可知,又∵,∴,∴;解:(2)由(1)知:∴四边形是平行四边形,又∵∴是菱形;(3)在中,∴;【点睛】本题考查的是菱形,难度适中,需要熟练掌握菱形的判定以及菱形面积的公式.23、(1)答案见解析;(2)BD=CE,证明见解析;(3)PB的长是或.【解析】试题分析:(1)根据题意画出图形即可;(2)根据“SAS”证明△ABD≌△ACE,从而可得BD=CE;(3)①根据“SAS”可证△ABD≌△ACE,从而得到∠ABD=∠ACE,再由两角对应相等的两个三角形相似可证△ACD∽△PBE,列比例方程可求出PB的长;②与①类似,先求出PD的长,再把PD和BD相加.解:(1)如图(2)BD和CE的数量是:BD=CE;∵∠DAB+∠BAE=∠CAE+∠BAE=90

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论