版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说法正确的是()A.两个转盘转出蓝色的概率一样大B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了C.先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率不同D.游戏者配成紫色的概率为2.下列说法正确的是()A.不可能事件发生的概率为;B.随机事件发生的概率为C.概率很小的事件不可能发生;D.投掷一枚质地均匀的硬币次,正面朝上的次数一定是次3.已知⊙O的直径为12cm,如果圆心O到一条直线的距离为7cm,那么这条直线与这个圆的位置关系是()A.相离 B.相切 C.相交 D.相交或相切4.已知反比例函数的图象过点则该反比例函数的图象位于()A.第一、二象限 B.第一、三象限 C.第二、四象限 D.第三、四象限5.如图,在△ABC中,点D、E分别在边AB、AC上,则在下列五个条件中:①∠AED=∠B;②DE∥BC;③=;④AD·BC=DE·AC;⑤∠ADE=∠C,能满足△ADE∽△ACB的条件有()A.1个 B.2 C.3个 D.4个6.如图,∠AOB是放置在正方形网格中的一个角,则tan∠AOB()A. B. C.1 D.7.当温度不变时,气球内气体的气压P(单位:kPa)是气体体积V(单位:m3)的函数,下表记录了一组实验数据:P与V的函数关系式可能是()V(单位:m3)11.522.53P(单位:kPa)96644838.432A.P=96V B.P=﹣16V+112C.P=16V2﹣96V+176 D.P=8.如图,为的切线,切点为,连接,与交于点,延长与交于点,连接,若,则的度数为()A. B. C. D.9.已知反比例函数的图象经过点,则的值是()A. B. C. D.10.如图,△ABC是⊙O的内接三角形,∠AOB=110°,则∠ACB的度数为()A.35° B.55° C.60° D.70°11.若半径为5cm的一段弧长等于半径为2cm的圆的周长,则这段弧所对的圆心角为()A.144° B.132° C.126° D.108°12.关于x的一元二次方程(2x-1)2+n2+1=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.无法判定二、填空题(每题4分,共24分)13.反比例函数的图象在第____________象限.14.已知P是线段AB的黄金分割点,PA>PB,AB=2cm,则PA为___cm.15.顶点在原点的二次函数图象先向左平移1个单位长度,再向下平移2个单位长度后,所得的抛物线经过点(0,﹣3),则平移后抛物线相应的函数表达式为_____.16.二次函数y=ax2+4ax+c的最大值为4,且图象过点(-3,0),则该二次函数的解析式为____________.17.已知关于x的方程x2-3x+m=0的一个根是1,则m=__________.18.将抛物线y=x2﹣2x+3向上平移1个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为____________________________三、解答题(共78分)19.(8分)如图,平面直角坐标系内,二次函数的图象经过点,与轴交于点.求二次函数的解析式;点为轴下方二次函数图象上一点,连接,若的面积是面积的一半,求点坐标.20.(8分)如图在完全相同的四张卡片中,分别画出边长相等的正方形和等边三角形,然后放在盒子里搅匀,闭上眼睛任取两张,看纸片上的图形能拼成长方形或拼成菱形或拼成小房子,预测一下能拼成“小房子”的概率有多大.21.(8分)在下列网格图中,每个小正方形的边长均为1个单位.Rt△ABC中,∠C=90°,AC=3,BC=4,△ABC以A为旋转中心,沿顺时针方向旋转90°后得到△AB1C1;(1)作出△AB1C1;(不写画法)(2)求点C转过的路径长;(3)求边AB扫过的面积.22.(10分)如图,在△ABC中,AB=AC,点D为BC的中点,经过AD两点的圆分别与AB,AC交于点E、F,连接DE,DF.(1)求证:DE=DF;(2)求证:以线段BE+CF,BD,DC为边围成的三角形与△ABC相似,23.(10分)如图,已知二次函数的图象与轴,轴分别交于A三点,A在B的左侧,请求出以下几个问题:(1)求点A的坐标;(2)求函数图象的对称轴;(3)直接写出函数值时,自变量x的取值范围.24.(10分)如图,AB是半圆O的直径,C为半圆弧上一点,在AC上取一点D,使BC=CD,连结BD并延长交⊙O于E,连结AE,OE交AC于F.(1)求证:△AED是等腰直角三角形;(2)如图1,已知⊙O的半径为.①求的长;②若D为EB中点,求BC的长.(3)如图2,若AF:FD=7:3,且BC=4,求⊙O的半径.25.(12分)某校为了解每天的用电情况,抽查了该校某月10天的用电量,统计如下(单位:度):用电量9093102113114120天数112312(1)该校这10天用电量的众数是度,中位数是度;(2)估计该校这个月的用电量(用30天计算).26.如图,在中,是边上的一点,若,求证:.
参考答案一、选择题(每题4分,共48分)1、D【解析】A、A盘转出蓝色的概率为、B盘转出蓝色的概率为,此选项错误;B、如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性不变,此选项错误;C、由于A、B两个转盘是相互独立的,先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率相同,此选项错误;D、画树状图如下:由于共有6种等可能结果,而出现红色和蓝色的只有1种,所以游戏者配成紫色的概率为,故选D.2、A【分析】由题意根据不可能事件是指在任何条件下不会发生,随机事件就是可能发生,也可能不发生的事件,发生的机会大于0并且小于1,进行判断.【详解】解:A、不可能事件发生的概率为0,故本选项正确;B、随机事件发生的概率P为0<P<1,故本选项错误;C、概率很小的事件,不是不发生,而是发生的机会少,故本选项错误;D、投掷一枚质地均匀的硬币1000次,是随机事件,正面朝上的次数不确定是多少次,故本选项错误;故选:A.【点睛】本题考查不可能事件、随机事件的概念.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3、A【分析】这条直线与这个圆的位置关系只要比较圆心到直线的距离与半径的大小关系即可.【详解】∵⊙O的直径为12cm,∴⊙O的半径r为6cm,如果圆心O到一条直线的距离d为7cm,d>r,这条直线与这个圆的位置关系是相离.故选择:A.【点睛】本题考查直线与圆的位置关系问题,掌握点到直线的距离与半径的关系是关键.4、C【分析】先根据点的坐标求出k值,再利用反比例函数图象的性质即可求解.【详解】解:∵反比例函数(k≠0)的图象经过点P(2,-3),
∴k=2×(-3)=-6<0,
∴该反比例函数经过第二、四象限.
故选:C.【点睛】本题考查了反比例函数的性质.反比例函数(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大.5、D【分析】根据相似三角形的判定定理判断即可.【详解】解:①由∠AED=∠B,∠A=∠A,则可判断△ADE∽△ACB;②DE∥BC,则有∠AED=∠C,∠ADE=∠B,则可判断△ADE∽△ACB;③=,∠A=∠A,则可判断△ADE∽△ACB;④AD·BC=DE·AC,可化为,此时不确定∠ADE=∠ACB,故不能确定△ADE∽△ACB;⑤由∠ADE=∠C,∠A=∠A,则可判断△ADE∽△ACB;所以能满足△ADE∽△ACB的条件是:①②③⑤,共4个,故选:D.【点睛】此题考查了相似三角形的判定,关键是掌握相似三角形的三种判定定理.6、C【分析】连接AB,分别利用勾股定理求出△AOB的各边边长,再利用勾股定理逆定理求得△ABO是直角三角形,再求tan∠AOB的值即可.【详解】解:连接AB如图,利用勾股定理得,,∵,,∴∴利用勾股定理逆定理得,△AOB是直角三角形∴tan∠AOB==故选C【点睛】本题考查了在正方形网格中,勾股定理及勾股定理逆定理的应用.7、D【解析】试题解析:观察发现:故P与V的函数关系式为故选D.点睛:观察表格发现从而确定两个变量之间的关系即可.8、D【分析】由切线性质得到,再由等腰三角形性质得到,然后用三角形外角性质得出【详解】切线性质得到故选D【点睛】本题主要考查圆的切线性质、三角形的外角性质等,掌握基础定义是解题关键9、A【分析】把代入反比例函数的解析式即可求解.【详解】把代入得:k=-4故选:A【点睛】本题考查的是求反比例函数的解析式,掌握反比例函数的图象和性质是关键.10、B【分析】直接根据圆周角定理进行解答即可.【详解】解:∵∠AOB与∠ACB是同弧所对的圆心角与圆周角,∠AOB=110°,∴∠ACB=∠AOB=55°.故选:B.【点睛】本题考查了三角形的外接圆与外心,圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.11、A【分析】利用圆的周长公式求得该弧的长度,然后由弧长公式进行计算.【详解】解:依题意得2π×2=,解得n=1.故选:A.【点睛】本题考查了弧长的计算.此题的已知条件是半径为2的圆的周长=半径为5的弧的弧长.12、C【分析】先对原方程进行变形,然后进行判定即可.【详解】解:由原方程可以化为:(2x-1)2=-n2-1∵(2x-1)2≥0,-n2-1≤-1∴原方程没有实数根.故答案为C.【点睛】本题考查了一元二次方程的解,解题的关键在于对方程的变形,而不是运用根的判别式.二、填空题(每题4分,共24分)13、二、四【解析】根据反比例函数中k=-5得出此函数图象所在的象限即可.【详解】∵反比例函数中,k=-5<0,∴此函数的图象在二、四象限,故答案为:二、四.【点睛】本题考查的是反比例函数图象的性质,熟知反比例函数当k<0时函数的图象在二、四象限是解答此题的关键.14、【分析】把一条线段分割为两部分,使较大部分与全长的比值等于较小部分与较大的比值,则这个比值即为黄金分割,其比值是【详解】∵P为线段AB的黄金分割点,且PA>PB,AB=2cm,∴故答案为.【点睛】分析题意可知,本题主要考查了黄金分割,弄清楚黄金分割的定义是解答此题的关键;15、y=﹣(x+1)2﹣2【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为,再把点(0,﹣3)代入即可求解a的值,进而得平移后抛物线的函数表达式.【详解】由题意可知,平移后的函数的顶点为(﹣1,﹣2),设平移后函数的解析式为,∵所得的抛物线经过点(0,﹣3),∴﹣3=a﹣2,解得a=﹣1,∴平移后函数的解析式为,故答案为.【点睛】本题考查坐标与图形变化-平移,解题的关键是掌握坐标平移规律:“左右平移时,横坐标左移减右移加,纵坐标不变;上下平移时,横坐标不变,纵坐标上移加下移减”。16、y=-4x2-16x-12【解析】∵抛物线的对称轴为直线x==﹣2,∴抛物线的顶点坐标为(﹣2,4),又∵抛物线过点(﹣3,0),∴,解得:a=﹣4,c=﹣12,则抛物线的解析式为y=-4x2-16x-12.故答案为y=-4x2-16x-12.【点睛】本题考查用待定系数法求二次函数解析式,解此题的关键在于先根据顶点坐标与函数系数的关系,求得顶点坐标,再用待定系数法求函数解析式即可.17、1【解析】试题分析:∵关于x的方程的一个根是1,∴1﹣3×1+m=0,解得,m=1,故答案为1.考点:一元二次方程的解.18、或【分析】根据函数图象向上平移加,向右平移减,可得函数解析式.【详解】解:将y=x1-1x+3化为顶点式,得:y=(x-1)1+1.将抛物线y=x1-1x+3向上平移1个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为:y=(x-1-3)1+1+1;即y=(x-4)1+3或.故答案为:或.【点睛】本题考查了二次函数图象与几何变换,函数图象的平移规律是:左加右减,上加下减.三、解答题(共78分)19、(1);(2)点坐标为或【分析】(1)根据A、B、C三点坐标,运用待定系数法即可解答;(2)由的面积是面积的一半,则D点的纵坐标为-3,令y=3,求得x的值即为D点的纵坐标.【详解】解:设D的坐标为(x,yD)∵的面积是面积的一半∴,又∵点在轴下方,即.令y=-3,即解得:,,∴点坐标为或【点睛】本题主要考查了求二次函数解析式和三角形的面积,确定二次函数解析式并确定△ABD的高是解答本题的关键.20、.【分析】画出树状图,由概率公式即可得出答案.【详解】画树状图如图:∵所有机会均等的结果有12种,能组成小房子的结果有8种,∴P(所抽出的两张卡片能拼成“小房子”)=.【点睛】本题考查利用列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比;根据树状图得到能组成小房子的情况数是解题关键.21、(1)见解析;(2)π;(3)π【分析】(1)根据旋转的性质可直接进行作图;(2)由(1)图及旋转的性质可得点C的运动路径为圆弧,其所在的圆心为A,半径为3,然后根据弧长计算公式可求解;(3)由题意可得边AB扫过的面积为扇形的面积,其扇形的圆心角为90°,半径为5,然后可求解.【详解】解:(1)如图所示:(2)∵由已知得,CA=3,∴点C旋转到点C1所经过的路线长为:=π×3=π;(3)由图可得:AB===5,∴S=π×52=π.【点睛】本题主要考查旋转的性质、弧长计算及扇形的面积,熟练掌握旋转的性质、弧长计算及扇形的面积公式是解题的关键.22、(1)详见解析;(2)详见解析【分析】(1)连接AD,证明∠BAD=∠CAD即可得出,则结论得出;(2)在AE上截取EG=CF,连接DG,证明△GED≌△CFD,得出DG=CD,∠EGD=∠C,则可得出结论△DBG∽△ABC.【详解】(1)证明:连接AD,∵AB=AC,BD=DC,∴∠BAD=∠CAD,∴,∴DE=DF.(2)证明:在AE上截取EG=CF,连接DG,∵四边形AEDF内接于圆,∴∠DFC=∠DEG,∵DE=DF,∴△GED≌△CFD(SAS),∴DG=CD,∠EGD=∠C,∵AB=AC,∴∠B=∠C,∴△DBG∽△ABC,即以线段BE+CF,BD,DC为边围成的三角形与△ABC相似.【点睛】本题考查了圆的综合问题,熟练掌握圆的内接四边形性质与相似三角形的判定是解题的关键.23、(1)A()B();(2)x;(3).【分析】(1)令则,解方程即可;(2)根据二次函数的对称轴公式代入计算即可;(3)结合函数图像,取函数图像位于x轴下方部分,写出x取值范围即可.【详解】解:(1)令则,解得∴A()B();(2)∴对称轴为;(3)∵,∴图像位于x轴下方,∴x取值范围为.【点睛】本题考查了二次函数与一元二次方程关系,对称轴求法,二次函数与不等式的关系,熟记相关知识是解题关键.24、(1)见解析;(2)①;②;(3)【分析】(1)由已知可得△BCD是等腰直角三角形,所以∠CBD=∠EAD=45°,因为∠AEB=90°可证△AED是等腰直角三角形;(2)①已知可得∠EAD=45°,∠EOC=90°,则△EOC是等腰直角三角形,所以CE的弧长=×2×π×=;②由已知可得ED=BD,在Rt△ABE中,(2)2=AE2+(2AE)2,所以AE=2,AD=2,易证△AED∽△BCD,所以BC=;(3)由已知可得AF=AD,过点E作EG⊥AD于G,EG=AD,GF=AD,tan∠EFG=,得出FO=r,在Rt△COF中,FC=r,EF=r,在Rr△EFG中,由勾股定理,求出AD=r,AF=r,所以AC=AF+FC=,CD=BC=4,AC=4+AD,可得r=4+r,解出r即可.【详解】解:(1)∵BC=CD,AB是直径,∴△BCD是等腰直角三角形,∴∠CBD=45°,∵∠CBD=∠EAD=45°,∵∠AEB=90°,∴△AED是等腰直角三角形;(2)①∵∠EAD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广告签约合同范例
- 维修后门围墙合同模板
- 基于虚拟现实的2024年度旅游体验服务合同
- 简易大棚修建合同范例
- 二零二四年企业战略规划咨询合同
- 二零二四年度综合物流服务提供商合作合同
- 2024蔬菜大棚购销合同范文
- 2024版物联网应用产品开发合同
- 2024美食广场餐饮档口招商合同
- 二零二四年度电子商务广告法律法规解读合同3篇
- 2024年双方离婚协议书自愿电子版(二篇)
- 2024年碳核算核查员理论考试题库(含答案)
- 新外研版高中英语必修1单词正序英汉互译默写本
- 选择性必修二《Unit 3 Food and Culture》单元教学设计
- 读书分享《曾国藩传》
- 社区用品活动方案
- 2024-2030年中国盾构机电缆行业市场调查研究及投资策略研究报告
- 《心电图在老年病学中的应用》
- 旅游学概论(郭胜 第五版) 课件 第5、6章 旅游业、旅游市场
- 2024年保安员考试题库及参考答案(巩固)
- 掌骨骨折的患者护理课件
评论
0/150
提交评论