版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一个四面体所有棱长都是4,四个顶点在同一个球上,则球的表面积为()A. B. C. D.2.在菱形中,,,,分别为,的中点,则()A. B. C.5 D.3.集合的真子集的个数是()A. B. C. D.4.已知函数,的图象与直线的两个相邻交点的距离等于,则的一条对称轴是()A. B. C. D.5.设为等差数列的前项和,若,则A. B.C. D.6.设,分别为双曲线(a>0,b>0)的左、右焦点,过点作圆的切线与双曲线的左支交于点P,若,则双曲线的离心率为()A. B. C. D.7.已知双曲线的一个焦点与抛物线的焦点重合,则双曲线的离心率为()A. B. C.3 D.48.已知双曲线的渐近线方程为,且其右焦点为,则双曲线的方程为()A. B. C. D.9.已知集合,,,则()A. B. C. D.10.已知函数f(x)=eb﹣x﹣ex﹣b+c(b,c均为常数)的图象关于点(2,1)对称,则f(5)+f(﹣1)=()A.﹣2 B.﹣1 C.2 D.411.山东烟台苹果因“果形端正、色泽艳丽、果肉甜脆、香气浓郁”享誉国内外.据统计,烟台苹果(把苹果近似看成球体)的直径(单位:)服从正态分布,则直径在内的概率为()附:若,则,.A.0.6826 B.0.8413 C.0.8185 D.0.954412.正项等比数列中的、是函数的极值点,则()A. B.1 C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.某班星期一共八节课(上午、下午各四节,其中下午最后两节为社团活动),排课要求为:语文、数学、外语、物理、化学各排一节,从生物、历史、地理、政治四科中选排一节.若数学必须安排在上午且与外语不相邻(上午第四节和下午第一节不算相邻),则不同的排法有__________种.14.函数的图象在处的切线与直线互相垂直,则_____.15.设等比数列的前项和为,若,则数列的公比是.16.设是等比数列的前项的和,成等差数列,则的值为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)(本小题满分12分)已知椭圆C:x2a2+y(1)求椭圆C的标准方程;(2)过点A(1,0)的直线与椭圆C交于点M,N,设P为椭圆上一点,且OM+ON=t18.(12分)如图,三棱柱中,侧面是菱形,其对角线的交点为,且.(1)求证:平面;(2)设,若直线与平面所成的角为,求二面角的正弦值.19.(12分)已知直线是曲线的切线.(1)求函数的解析式,(2)若,证明:对于任意,有且仅有一个零点.20.(12分)近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸.呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机的对入院人进行了问卷调查得到了如下的列联表:患心肺疾病不患心肺疾病合计男女合计已知在全部人中随机抽取人,抽到患心肺疾病的人的概率为.(1)请将上面的列联表补充完整,并判断是否有的把握认为患心肺疾病与性别有关?请说明你的理由;(2)已知在不患心肺疾病的位男性中,有位从事的是户外作业的工作.为了指导市民尽可能地减少因雾霾天气对身体的伤害,现从不患心肺疾病的位男性中,选出人进行问卷调查,求所选的人中至少有一位从事的是户外作业的概率.下面的临界值表供参考:(参考公式,其中)21.(12分)已知椭圆C:()的左、右焦点分别为,,离心率为,且过点.(1)求椭圆C的方程;(2)过左焦点的直线l与椭圆C交于不同的A,B两点,若,求直线l的斜率k.22.(10分)已知函数.(1)若,解关于的不等式;(2)若当时,恒成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
将正四面体补成正方体,通过正方体的对角线与球的半径关系,求解即可.【详解】解:如图,将正四面体补形成一个正方体,正四面体的外接球与正方体的外接球相同,∵四面体所有棱长都是4,∴正方体的棱长为,设球的半径为,则,解得,所以,故选:A.【点睛】本题主要考查多面体外接球问题,解决本题的关键在于,巧妙构造正方体,利用正方体的外接球的直径为正方体的对角线,从而将问题巧妙转化,属于中档题.2、B【解析】
据题意以菱形对角线交点为坐标原点建立平面直角坐标系,用坐标表示出,再根据坐标形式下向量的数量积运算计算出结果.【详解】设与交于点,以为原点,的方向为轴,的方向为轴,建立直角坐标系,则,,,,,所以.故选:B.【点睛】本题考查建立平面直角坐标系解决向量的数量积问题,难度一般.长方形、正方形、菱形中的向量数量积问题,如果直接计算较麻烦可考虑用建系的方法求解.3、C【解析】
根据含有个元素的集合,有个子集,有个真子集,计算可得;【详解】解:集合含有个元素,则集合的真子集有(个),故选:C【点睛】考查列举法的定义,集合元素的概念,以及真子集的概念,对于含有个元素的集合,有个子集,有个真子集,属于基础题.4、D【解析】
由题,得,由的图象与直线的两个相邻交点的距离等于,可得最小正周期,从而求得,得到函数的解析式,又因为当时,,由此即可得到本题答案.【详解】由题,得,因为的图象与直线的两个相邻交点的距离等于,所以函数的最小正周期,则,所以,当时,,所以是函数的一条对称轴,故选:D【点睛】本题主要考查利用和差公式恒等变形,以及考查三角函数的周期性和对称性.5、C【解析】
根据等差数列的性质可得,即,所以,故选C.6、C【解析】
设过点作圆的切线的切点为,根据切线的性质可得,且,再由和双曲线的定义可得,得出为中点,则有,得到,即可求解.【详解】设过点作圆的切线的切点为,,所以是中点,,,.故选:C.【点睛】本题考查双曲线的性质、双曲线定义、圆的切线性质,意在考查直观想象、逻辑推理和数学计算能力,属于中档题.7、A【解析】
根据题意,由抛物线的方程可得其焦点坐标,由此可得双曲线的焦点坐标,由双曲线的几何性质可得,解可得,由离心率公式计算可得答案.【详解】根据题意,抛物线的焦点为,则双曲线的焦点也为,即,则有,解可得,双曲线的离心率.故选:A.【点睛】本题主要考查双曲线、抛物线的标准方程,关键是求出抛物线焦点的坐标,意在考查学生对这些知识的理解掌握水平.8、B【解析】试题分析:由题意得,,所以,,所求双曲线方程为.考点:双曲线方程.9、D【解析】
根据集合的基本运算即可求解.【详解】解:,,,则故选:D.【点睛】本题主要考查集合的基本运算,属于基础题.10、C【解析】
根据对称性即可求出答案.【详解】解:∵点(5,f(5))与点(﹣1,f(﹣1))满足(5﹣1)÷2=2,故它们关于点(2,1)对称,所以f(5)+f(﹣1)=2,故选:C.【点睛】本题主要考查函数的对称性的应用,属于中档题.11、C【解析】
根据服从的正态分布可得,,将所求概率转化为,结合正态分布曲线的性质可求得结果.【详解】由题意,,,则,,所以,.故果实直径在内的概率为0.8185.故选:C【点睛】本题考查根据正态分布求解待定区间的概率问题,考查了正态曲线的对称性,属于基础题.12、B【解析】
根据可导函数在极值点处的导数值为,得出,再由等比数列的性质可得.【详解】解:依题意、是函数的极值点,也就是的两个根∴又是正项等比数列,所以∴.故选:B【点睛】本题主要考查了等比数列下标和性质以应用,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、1344【解析】
分四种情况讨论即可【详解】解:数学排在第一节时有:数学排在第二节时有:数学排在第三节时有:数学排在第四节时有:所以共有1344种故答案为:1344【点睛】考查排列、组合的应用,注意分类讨论,做到不重不漏;基础题.14、1.【解析】
求函数的导数,根据导数的几何意义结合直线垂直的直线斜率的关系建立方程关系进行求解即可.【详解】函数的图象在处的切线与直线垂直,函数的图象在的切线斜率本题正确结果:【点睛】本题主要考查直线垂直的应用以及导数的几何意义,根据条件建立方程关系是解决本题的关键.15、.【解析】
当q=1时,.当时,,所以.16、2【解析】
设等比数列的公比设为再根据成等差数列利用基本量法求解再根据等比数列各项间的关系求解即可.【详解】解:等比数列的公比设为成等差数列,可得若则显然不成立,故则,化为解得,则故答案为:.【点睛】本题主要考查了等比数列的基本量求解以及运用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)x24+【解析】试题分析:本题主要考查椭圆的标准方程及其几何性质、直线与椭圆的位置关系等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,先利用离心率、a2=b2+c2、四边形的面积列出方程,解出a和b的值,从而得到椭圆的标准方程;第二问,讨论直线MN的斜率是否存在,当直线MN的斜率存在时,直线方程与椭圆方程联立,消参,利用韦达定理,得到x1+x2、x1x试题解析:(1)∵e=22, ∴又S=12×2a×2b=4∴椭圆C的标准方程为x2(2)由题意知,当直线MN斜率存在时,设直线方程为y=k(x-1),M(x联立方程x24+因为直线与椭圆交于两点,所以Δ=16k∴x又∵OM∴因为点P在椭圆x24+即2k又∵|OM即|NM|<4化简得:13k4-5k2∵t2=1-当直线MN的斜率不存在时,M(1, 62∴t∈[-1, 考点:椭圆的标准方程及其几何性质、直线与椭圆的位置关系.18、(1)见解析;(2).【解析】
(1)根据菱形的特征和题中条件得到平面,结合线面垂直的定义和判定定理即可证明;
2建立空间直角坐标系,利用向量知识求解即可.【详解】(1)证明:∵四边形是菱形,,平面平面,又是的中点,,又平面(2)∴直线与平面所成的角等于直线与平面所成的角.平面,∴直线与平面所成的角为,即.因为,则在等腰直角三角形中,所以.在中,由得,以为原点,分别以为轴建立空间直角坐标系.则所以设平面的一个法向量为,则,可得,取平面的一个法向量为,则,所以二面角的正弦值的大小为.(注:问题(2)可以转化为求二面角的正弦值,求出后,在中,过点作的垂线,垂足为,连接,则就是所求二面角平面角的补角,先求出,再求出,最后在中求出.)【点睛】本题主要考查了线面垂直的判定以及二面角的求解,属于中档题.19、(1)(2)证明见解析【解析】
(1)对函数求导,并设切点,利用点既在曲线上、又在切线上,列出方程组,解得,即可得答案;(2)当x充分小时,当x充分大时,可得至少有一个零点.再证明零点的唯一性,即对函数求导得,对分和两种情况讨论,即可得答案.【详解】(1)根据题意,,设直线与曲线相切于点.根据题意,可得,解之得,所以.(2)由(1)可知,则当x充分小时,当x充分大时,∴至少有一个零点.∵,①若,则,在上单调递增,∴有唯一零点.②若令,得有两个极值点,∵,∴,∴.∴在上单调递增,在上单调递减,在上单调递增.∴极大值为.,又,∴在(0,16)上单调递增,∴,∴有唯一零点.综上可知,对于任意,有且仅有一个零点.【点睛】本题考查导数的几何意义的运用、利用导数证明函数的零点个数,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力和运算求解能力,求解时注意零点存在定理的运用.20、(1)列联表见解析,有的把握认为患心肺疾病与性别有关,理由见解析;(2).【解析】
(1)结合题意完善列联表,计算出的观测值,对照临界值表可得出结论;(2)记不患心肺疾病的五位男性中从事户外作业的两人分别为、,其余三人分别为、、,利用列举法列举出所有的基本事件,并确定事件“所选的人中至少有一位从事的是户外作业”所包含的基本事件数,利用古典概型的概率公式可取得所求事件的概率.【详解】(1)由于在全部人中随机抽取人,抽到患心肺疾病的人的概率为,所以人中患心肺疾病的人数为人,故可将列联表补充如下:患心肺疾病不患心肺疾病合计男女合计.故有的把握认为患心肺疾病与性别有关;(2)记不患心肺疾病的五位男性中从事户外作业的两人分别为、,其余三人分别为、、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 劳务派遣工作双方协议书七篇
- 2023劳务派遣工作协议书七篇
- 鱼鳞病病因介绍
- 中小学结核病防治知识
- 【中职专用】中职对口高考-机电与机制类专业-核心课-模拟试卷2(河南适用)(答案版)
- 重庆2020-2024年中考英语5年真题回-学生版-专题03 短文填空
- 山东省青岛市即墨区2023-2024学年八年级上学期期末英语试题(原卷版)-A4
- 黄金卷04(新课标卷)(新疆、西藏专用)(解析版)-A4
- 2023年新型高效饲料及添加剂项目融资计划书
- 2023年硝酸钾项目筹资方案
- 2025年重庆货运从业资格证考试题及答案详解
- 屋面板的拆除与更换施工方案
- 生命不是游戏拒绝死亡挑战主题班会
- 本地化部署合同
- 2024年云南省中考历史试卷
- 油气管线安全保护方案
- 国家职业技术技能标准 4-07-05-04 消防设施操作员 人社厅发201963号
- 新教科版小学1-6年级科学需做实验目录
- 2024-2030年中国辣椒碱市场占有率调查及经营战略可行性分析研究报告
- 全过程工程咨询项目部管理制度
- 拒绝躺平 停止摆烂-学生心理健康主题班会(课件)
评论
0/150
提交评论