2022届陕西省周至县第五中学高三六校第一次联考数学试卷含解析_第1页
2022届陕西省周至县第五中学高三六校第一次联考数学试卷含解析_第2页
2022届陕西省周至县第五中学高三六校第一次联考数学试卷含解析_第3页
2022届陕西省周至县第五中学高三六校第一次联考数学试卷含解析_第4页
2022届陕西省周至县第五中学高三六校第一次联考数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022高考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,其中,记函数满足条件:为事件,则事件发生的概率为A. B.C. D.2.若,,,点C在AB上,且,设,则的值为()A. B. C. D.3.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足,其中星等为mk的星的亮度为Ek(k=1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为()A.1010.1 B.10.1 C.lg10.1 D.10–10.14.在很多地铁的车厢里,顶部的扶手是一根漂亮的弯管,如下图所示.将弯管形状近似地看成是圆弧,已知弯管向外的最大突出(图中)有,跨接了6个坐位的宽度(),每个座位宽度为,估计弯管的长度,下面的结果中最接近真实值的是()A. B. C. D.5.已知函数的图象向左平移个单位后得到函数的图象,则的最小值为()A. B. C. D.6.如图,在三棱锥中,平面,,现从该三棱锥的个表面中任选个,则选取的个表面互相垂直的概率为()A. B. C. D.7.已知集合M={y|y=2x,x>0},N={x|y=lg(2x-xA.(1,+∞) B.(1,2) C.[2,+∞) D.[1,+∞)8.已知函数,不等式对恒成立,则的取值范围为()A. B. C. D.9.已知为虚数单位,实数满足,则()A.1 B. C. D.10.如图所示,网络纸上小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该几何体的体积为()A.2 B. C.6 D.811.已知集合,集合,那么等于()A. B. C. D.12.为比较甲、乙两名高中学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为100分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述不正确的是()A.甲的数据分析素养优于乙 B.乙的数据分析素养优于数学建模素养C.甲的六大素养整体水平优于乙 D.甲的六大素养中数学运算最强二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中的常数项为__________.14.已知为双曲线的左、右焦点,过点作直线与圆相切于点,且与双曲线的右支相交于点,若是上的一个靠近点的三等分点,且,则四边形的面积为_______.15.己知双曲线的左、右焦点分别为,直线是双曲线过第一、三象限的渐近线,记直线的倾斜角为,直线,,垂足为,若在双曲线上,则双曲线的离心率为_______16.已知,则_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设椭圆的左右焦点分别为,离心率是,动点在椭圆上运动,当轴时,.(1)求椭圆的方程;(2)延长分别交椭圆于点(不重合).设,求的最小值.18.(12分)如图,在三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=C1C=1,M,N分别是AB,A1C的中点.(1)求证:直线MN⊥平面ACB1;(2)求点C1到平面B1MC的距离.19.(12分)数列满足,是与的等差中项.(1)证明:数列为等比数列,并求数列的通项公式;(2)求数列的前项和.20.(12分)已知抛物线和圆,倾斜角为45°的直线过抛物线的焦点,且与圆相切.(1)求的值;(2)动点在抛物线的准线上,动点在上,若在点处的切线交轴于点,设.求证点在定直线上,并求该定直线的方程.21.(12分)设函数.(1)若,求函数的值域;(2)设为的三个内角,若,求的值;22.(10分)如图所示的几何体中,,四边形为正方形,四边形为梯形,,,,为中点.(1)证明:;(2)求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】

由得,分别以为横纵坐标建立如图所示平面直角坐标系,由图可知,.2.B【解析】

利用向量的数量积运算即可算出.【详解】解:,,又在上,故选:【点睛】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用.3.A【解析】

由题意得到关于的等式,结合对数的运算法则可得亮度的比值.【详解】两颗星的星等与亮度满足,令,.故选A.【点睛】本题以天文学问题为背景,考查考生的数学应用意识、信息处理能力、阅读理解能力以及指数对数运算.4.B【解析】

为弯管,为6个座位的宽度,利用勾股定理求出弧所在圆的半径为,从而可得弧所对的圆心角,再利用弧长公式即可求解.【详解】如图所示,为弯管,为6个座位的宽度,则设弧所在圆的半径为,则解得可以近似地认为,即于是,长所以是最接近的,其中选项A的长度比还小,不可能,因此只能选B,260或者由,所以弧长.故选:B【点睛】本题考查了弧长公式,需熟记公式,考查了学生的分析问题的能力,属于基础题.5.A【解析】

首先求得平移后的函数,再根据求的最小值.【详解】根据题意,的图象向左平移个单位后,所得图象对应的函数,所以,所以.又,所以的最小值为.故选:A【点睛】本题考查三角函数的图象变换,诱导公式,意在考查平移变换,属于基础题型.6.A【解析】

根据线面垂直得面面垂直,已知平面,由,可得平面,这样可确定垂直平面的对数,再求出四个面中任选2个的方法数,从而可计算概率.【详解】由已知平面,,可得,从该三棱锥的个面中任选个面共有种不同的选法,而选取的个表面互相垂直的有种情况,故所求事件的概率为.故选:A.【点睛】本题考查古典概型概率,解题关键是求出基本事件的个数.7.B【解析】M=y|y=N==x|∴M∩N=(1,2).故选B.8.C【解析】

确定函数为奇函数,且单调递减,不等式转化为,利用双勾函数单调性求最值得到答案.【详解】是奇函数,,易知均为减函数,故且在上单调递减,不等式,即,结合函数的单调性可得,即,设,,故单调递减,故,当,即时取最大值,所以.故选:.【点睛】本题考查了根据函数单调性和奇偶性解不等式,参数分离求最值是解题的关键.9.D【解析】,则故选D.10.A【解析】

先由三视图确定该四棱锥的底面形状,以及四棱锥的高,再由体积公式即可求出结果.【详解】由三视图可知,该四棱锥为斜着放置的四棱锥,四棱锥的底面为直角梯形,上底为1,下底为2,高为2,四棱锥的高为2,所以该四棱锥的体积为.故选A【点睛】本题主要考查几何的三视图,由几何体的三视图先还原几何体,再由体积公式即可求解,属于常考题型.11.A【解析】

求出集合,然后进行并集的运算即可.【详解】∵,,∴.故选:A.【点睛】本小题主要考查一元二次不等式的解法,考查集合并集的概念和运算,属于基础题.12.D【解析】

根据所给的雷达图逐个选项分析即可.【详解】对于A,甲的数据分析素养为100分,乙的数据分析素养为80分,故甲的数据分析素养优于乙,故A正确;对于B,乙的数据分析素养为80分,数学建模素养为60分,故乙的数据分析素养优于数学建模素养,故B正确;对于C,甲的六大素养整体水平平均得分为,乙的六大素养整体水平均得分为,故C正确;对于D,甲的六大素养中数学运算为80分,不是最强的,故D错误;故选:D【点睛】本题考查了样本数据的特征、平均数的计算,考查了学生的数据处理能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.31【解析】

由二项式定理及其展开式得通项公式得:因为的展开式得通项为,则的展开式中的常数项为:,得解.【详解】解:,则的展开式中的常数项为:.故答案为:31.【点睛】本题考查二项式定理及其展开式的通项公式,求某项的导数,考查计算能力.14.60【解析】

根据题中给的信息与双曲线的定义可求得与,再在中,由余弦定理求解得,继而得到各边的长度,再根据计算求解即可.【详解】如图所示:设双曲线的半焦距为.因为,,,所以由勾股定理,得.所以.因为是上一个靠近点的三等分点,是的中点,所以.由双曲线的定义可知:,所以.在中,由余弦定理可得,所以,整理可得.所以,解得.所以.则.则,得.则的底边上的高为.所以.故答案为:60【点睛】本题主要考查了双曲线中利用定义与余弦定理求解线段长度与面积的方法,需要根据双曲线的定义表示各边的长度,再在合适的三角形里面利用余弦定理求得基本量的关系.属于难题.15.【解析】

由,则,所以点,因为,可得,点坐标化简为,代入双曲线的方程求解.【详解】设,则,即,解得,则,所以,即,代入双曲线的方程可得,所以所以解得.故答案为:【点睛】本题主要考查了直线与双曲线的位置关系,及三角恒等变换,还考查了运算求解的能力和数形结合的思想,属于中档题.16.【解析】

对原方程两边求导,然后令求得表达式的值.【详解】对等式两边求导,得,令,则.【点睛】本小题主要考查二项式展开式,考查利用导数转化已知条件,考查赋值法,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)【解析】

(1)根据题意直接计算得到,,得到椭圆方程.(2)不妨设,且,设,代入数据化简得到,故,得到答案.【详解】(1),所以,,化简得,所以,,所以方程为;(2)由题意得,不在轴上,不妨设,且,设,所以由,得,所以,由,得,代入,化简得:,由于,所以,同理可得,所以,所以当时,最小为【点睛】本题考查了椭圆方程,椭圆中的向量运算和最值,意在考查学生的计算能力和综合应用能力.18.(1)证明见解析.(2)【解析】

(1)连接AC1,BC1,结合中位线定理可证MN∥BC1,再结合线面垂直的判定定理和线面垂直的性质分别求证AC⊥BC1,BC1⊥B1C,即可求证直线MN⊥平面ACB1;(2)作交于点,通过等体积法,设C1到平面B1CM的距离为h,则有,结合几何关系即可求解【详解】(1)证明:连接AC1,BC1,则N∈AC1且N为AC1的中点;∵M是AB的中点.所以:MN∥BC1;∵A1A⊥平面ABC,AC⊂平面ABC,∴A1A⊥AC,在三棱柱ABC﹣A1B1C1中,AA1∥CC,∴AC⊥CC1,∵∠ACB=90°,BC∩CC1=C,BC⊂平面BB1C1C,CC1⊂平面BB1C1C,∴AC⊥平面BB1C1C,BC⊂平面BB1C1C,∴AC⊥BC1;又MN∥BC1∴AC⊥MN,∵CB=C1C=1,∴四边形BB1C1C正方形,∴BC1⊥B1C,∴MN⊥B1C,而AC∩B1C=C,且AC⊂平面ACB1,CB1⊂平面ACB1,∴MN⊥平面ACB1,(2)作交于点,设C1到平面B1CM的距离为h,因为MP,所以•MP,因为CM,B1C;B1M,所以所以:CM•B1M.因为,所以,解得所以点,到平面的距离为【点睛】本题主要考查面面垂直的证明以及点到平面的距离,一般证明面面垂直都用线面垂直转化为面面垂直,而点到面的距离常用体积转化来求,属于中档题19.(1)见解析,(2)【解析】

(1)根据等差中项的定义得,然后构造新等比数列,写出的通项即可求(2)根据(1)的结果,分组求和即可【详解】解:(1)由已知可得,即,可化为,故数列是以为首项,2为公比的等比数列.即有,所以.(2)由(1)知,数列的通项为:,故.【点睛】考查等差中项的定义和分组求和的方法;中档题.20.(1);(2)点在定直线上.【解析】

(1)设出直线的方程为,由直线和圆相切的条件:,解得;(2)设出,运用导数求得切线的斜率,求得为切点的切线方程,再由向量的坐标表示,可得在定直线上;【详解】解:(1)依题意设直线的方程为,由已知得:圆的圆心,半径,因为直线与圆相切,所以圆心到直线的距离,即,解得或(舍去).所以;(2)依题意设,由(1)知抛物线方程为,所以,所以,设,则以为切点的切线的斜率为,所以切线的方程为.令,,即交轴于点坐标为,所以,,,.设点坐标为,则,所以点在定直线上.【点睛】本题考查抛物线的方程和性质,直线与圆的位置关系的判断,考查直线方程和圆方程的运用,以及切线方程的求法,考查化简整理的运算能力,属于综合题.21.(1)(2)【解析】

(1)将,利用三角恒等变换转化为:,,再根据正弦函数的性质求解,(2)根据,得,又为的内角,得到,再根据,利用两角和与差的余弦公式求解,【详解】(1),,,,即的值域为;(2)由,得,又为的内角,所以,又因为在中,,所以,所以.【点睛】本题主要考查三角恒等变换和三角函数的性质,还考查了运算求解的能力,属于中档题,22.(1)见解析;(2)【解析】

(1)取的中点,结合三角形中位线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论