版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
五年级数学旋转教案4篇
五年级数学旋转教案篇1
教学内容P19例1、做一做、练习五第1—2题
教学
目标
知识与技能:让学生结合具体情境认识行与列,初步理解数对的含义;能在具体情境中用数对表示物体的。
过程与方法:使学生经历从已有经验到用数对确定物体位置的探索过程,体验用数对确定位置的必要性和简洁性。
情感、态度与价值观:渗透“数形结合”的思想,发展学生的空间观念。体会生活中处处有数学,产生对数学的亲切感。
教学重点经历用数对确定物体位置的探索过程,知道用数对表示位置的方法。
教学难点灵活运用数对知识解决实际问题。
教学方法直观演示法与自主探索、小组合作的方法。
教学准备多媒体课件
教学过程设计(含各环节中的教师活动和学生活动以及设计意图)
教学过程一、创设情境,激趣导入
课件出示主题图,播放动画。
怎样才能既准确又简明地表示张亮同学的位置呢?这节课我们就一起来进一步学习“确定位置”。(板书:确定位置)
二、探索新知
1、课件出示例1的内容。
(1)学生读题,了解已知信息。
教师引导学生可以根据自己在教室里的位置来思考这个问题。
(2)问:已知张亮同学是第二列、第三行的同学,你能指出谁是张亮同学吗?
学生联系实际的基础上根据图中张亮所在的列数的行数来确定张亮的位置,教师给予肯定。
2、认识数对,学会用数对确定具体情境中的位置。
(1)提出问题(看来用第几列、第几行描述一个人的位置真好,让我们有了一个统一的说法。)
大家觉得用这种方法表示一个人的位置,简炼吗?
师:能不能把这种方法再简化一下?
(2)创造、交流
同学们可了不起,在这么短的时间内,创造出了这么多种不同的表示方法。
这一种是哪个小组创造的?说说你们是怎么想的?
师;不错,既然每个小组都不约而同地保留下了这两个数,说明——?这两个数很重要!
真好!那这里的2和3各表示什么意思呢?
生:……
说得太棒了,数学规则需要统一,想不想知道数学上统一使用的方法,请看先写4,接着打上逗号,然后写3,最后打上括号,因为它们是一个整体。大家知道吗?像这样,用列数和行数组成的一对数,叫做——数对。
书:(2,3)
(4)如果用(2,3)表示张亮同学的位置,你能表示王艳和赵强同学的位置吗?看一看有什么不同?
启发学生思考,引导学生用数对表示位置。
3、游戏中概括提升
我发现咱们班同学学得特别快,下面咱们玩个游戏好吗?
(1)师出生对
我说数对,请符合要求的同学快速地站起来。看谁反应最快!
(3,1)(3,2)(3,3)(3,4)(3,5)
奇怪,怎么就正好站起来这么一排呢?
(2)生出生对
如果让你来出数对,你能让一排同学站起来吗?谁来试试?
生:……
师:也不错!有没有谁能说出点不一样的?
生:(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)
师:发现什么了?能说说为什么吗?
生:……
师:也就是说,数对中的第二个数相同,他们就都在同一行。
(3)师再出
不过,老师还有个本领:只说一个数对,就可能让一排同学都站起来,你们信不信?要不咱试试?
示(4,_)可能是哪些同学?
师:你的数对是?奇怪,我上面写(4,1)了吗?那你为什么站起来?
生:(第一个数是4,表示第4列,第二个数是求知数,所以第4列的每一个同学都有可能)能不能确定,到底是谁?如果_等于3呢,表示的一定是谁?其他同学坐下去,看来,要想确定某一个人的位置,只知道列数行不行?还得知道?(用数对表示位置一定要用到两个数)
师:(__)又可能是哪些同学?(全班同学都站起来了)。
师:全班同学都有可能吗?_、_表示两个相同的数,你的数对是(?,?),符合吗?不符合的同学请坐下。当_=1、2、3、4、5时,看来(__)能不能表示全班同学?只能表示什么?只能表示列数、行数相同同学的位置。
三、做一做,巩固确定位置的方法。
1、出示情景。组织学生观察情景,思考教师的提问。
2、引导学生利用在例题中学到的确定位置的方法来回答问题。
3、组织学生用一组数字来表示它们的位置。学生思考后可交流讨论,最后全班汇报。
四、反馈练习。
完成教材第19页的做一做。
五、课堂小结。
通过今天的学习,你有哪些收获?
五年级数学旋转教案篇2
教学目标:
1.使学生在具体情境中认识列、行的含义,知道确定第几列、第几行的规则,初步理解数对的含义,会用数对表示具体情境中物体的位置。
2.使学生经历由具体的座位抽象成用列、行表示的平面图的过程,提高抽象思维能力,发展空间观念。
3.使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。
教学过程:
一、情境引入
1、谈话:我们每个学期都要召开家长会,如果是你爸爸来参加家长会了,你用什么方法告诉他你在教室里的位置呢?
2、指名学生汇报,预设回答:(①我坐在第一组第二张桌子;②我坐在教室中间的位置;③我坐在第五行靠墙的位置)教师对学生的回答一一点评
指出:要确定自己的位置,一个条件是不够的,至少需要两个条件。
3、谈话:今天我就要学习一种简洁、新颖的方法来确定位置,想知道是什么方法吗?
二、教学新课
1、教学例1
(1)出示例题图,提问:这是某个班级的座位图,从图中你看出了什么?
学生回答后继续追问:谁能说说小军的位置?
预设回答:(小军坐在第4竖排第三个;小军坐在第三横排的第4个)
指导学生数的时候是从哪向哪数。
提问:如果我们不知道小军的位置,听了刚才同学的发言,能顺利地找到小军的位置吗?
谈话:这些方法都是正确的,但是你觉得用这样的方法描述小军的位置有什么不足之处吗?
预设回答(不够清楚,比较麻烦)
(2)用数对表示位置。
出示抽象图,谈话:我们把刚才例题图转化为抽象图,你还能找到小军的位置吗?
第5行○○○○○○
第4行○○○○○○
第3行○○○○○○
第2行○○○○○○
第1行○○○○○○
第第第第第第
123456
列列列列列列
谈话:实际上,在确定位置时,竖排叫列,确定第几列一般从左往右数;
横排叫行,确定第几行一半从前往后数(指图板书)。
小军位置是第几列第几行?(从左向右数第4列,从前向后数第3行)
像这样的位置我们可以用一个数对来表示(4,3)
让学生说说对(4,3)的理解
小结:(4,3)表示第4列,第3行,这样的数对包含两个数,第一个数表示第几列,第二个数表示第几行,两个数之间用逗号隔开,外面加上小括号。
(3)用数对表示位置。
课件出示问题:在抽象图中找出第2列第4行的位置,用数对表示是什么?
指名学生回答,让其他学生点评
继续出示问题:(6,5)在上图中表示第几列第几行的位置。
指名学生回答,让其他学生点评
回到例1教学用图,谈话:小军还有几个好朋友,你能用数对表示出他们的位置吗?
指名学生回答,并让他们说出表示什么
2、情境教学
(1)谈话:我们刚才学习了用数对来表示位置,那么家长会之前你能这个方法告诉你家长的位置吗?我们规定从讲台开始,从前向后分别为第一行、第二行……;从教室的门开始,老师的方向从左向右分别为第一列、第二列……。请大家每个人都想想自己的位置怎么用数对表示。
(2)同桌互相交流,说说自己位置表示的数对
(3)指名学生说说自己的位置和表示的数对,然后点评
(4)活动:出示数对,请相应的同学起立(1,4)(4,3)(2,2)(5,1)(7,5)(9,6)
点评:为什么
2.完成“练一练”。
(1)学生在书上完成1.2题。
你能找到第2列第4行的位置吗?有数对怎样表示?
(2)(5,5)表示什么呢?是图上的哪个圈?
两个“5”表示的意思一样吗?
三、巩固练习
1.完成练习三第1题。
教室里的座位共有几列几行呢?第1列第1行是哪个同学的座位?用数对怎样表示你能说说自己的座位在第几列第几行吗?用数对怎样表示?
在小组中互相说说,并互相指其他座位说数对。
2.完成练习三第2题。
在实际生活中,也经常用数对确定位置。
你能悦纳嘎数对表示这四块瓷砖的位置吗?
追问:第3列的两块瓷砖有什么共同特点吗?
第4行的两块瓷砖用数对表示位置时,写出的两个数对有什么相同的地方?
同一列的两块瓷砖,数对中的第一个数相同;
同一行的瓷砖,数对中的第二个数相同。
3.完成第3题。
(1)独立完成用数对表示每一块花砖的位置。
(2)在小组中交流花砖位置的排列有什么规律?
(3)汇报交流结果。
四、课堂总结
通过今天的学习,你有什么收获?你认为学习用数对确定位置的方法对你以后有什么指导作用呢?
板书设计:
用数对确定位置
竖排叫列,横排叫行。
数对中的第一个数表示第几列,第二个数表示第几行;
两个数之间用逗号隔开,两个数的外面用小括号括起来。
五年级数学旋转教案篇3
教学目标:
(1)通过观察操作,认识轴对称图形的特点,掌握轴对称图形的概念。
(2)能准确判断哪些事物是轴对称图形。
(3)能找出并画出轴对称图形的对称轴。
(4)通过实验,培养学生的抽象思维和空间想象能力。
(5)结合教材和联系生活实际培养学生的学习兴趣和热爱生活的情感。
教学重点:
(1)认识轴对称图形的特点,建立轴对称图形的概念;
(2)准确判断生活中哪些事物是轴对称图形。
教学难点;
根据本班学生学习的实际情况,本节课教学的难点是找轴对称图形的对称轴。
教学过程:
一、认识对称物体
1、出示物体:今天秦老师给大家带来了一些物体,这是我们学校的同学参加数学竞赛获得的奖杯。这时一架轰炸战斗机。这是海狮顶球。
2、请同学们仔细观察这些物体,想一想它们的外形有什么共同的特点。(可能的回答:对称)
(但部分学生这时并不真正理解何为对称)
追问:对称?你是怎样理解对称的呢?
(可能的回答:两边是一样的)
像这样两边形状、大小都完全相同的物体,我们就说它是对称的。(板书:对称)像这样对称的物体,在我们的生活中你看到过吗?谁来说说看?
(可能正确的回答:蝴蝶、蜻蜓……)
(可能错误的回答:剪刀)
若有错误答案则如此处理。追问:剪刀是不是对称的?学生产生分歧,有说是,有说不是。剪刀两边不是完全一样的,所以它不对称。但是沿着轮廓把它画在纸上,是一个对称的。
二、认识对称图形
1、这些对称的物体,我们把它画在纸上,就得到这样一些平面图形。(出示图片)这些图形还是对称的吗?(是对称的)
同学们真聪明,一眼就能看出这些图形都是对称的。那么像这样的图形,我们就把它们叫做——(生齐说:对称图形)
(师在“对称”后接着板书:图形)
2、是不是所有的图形都是对称的?它们又是怎样对称的?我们又怎样证明它们是不是对称图形?这就是我们这节课要研究的问题。为了研究这些问题,老师还带来了一些平面图形,你们看——
(师在黑板上贴出图形)
边贴边说:汽车图形、钥匙图形、桃子图形、蝴蝶图形、青蛙图形、竖琴图形、香港区徽图形。
这些图形都是对称的吗?(不是)
3、你们能给它们分分类吗?(能)谁愿意上来分一分?
你准备怎么分类?(分成两类:一类是对称图形,一类是不对称图形)
问全班同学:你们同意吗?(同意)
你们怎么知道这些图形就是对称图形?有什么办法来证明吗?(对折)
好,我们用这个办法试一下。谁愿意上来折给大家看的?自己上来,选择一个喜欢的图形折给大家看。
4、图形对折后你发现了什么?谁先说?(可能的回答:对折后两边一样或对折后两边重叠)
你们所说的两边一样、两边重叠,也就是说对折后两边重合了。
(师板书:重合)(若有说出完全重合则板书:完全重合)
请将对折后的对称图形贴到黑板上,谢谢。
师指不对称图形。同学们刚才我们通过把这些对称图形对折,发现对折后两边重合了,现在再请几位同学上来折一折不对称图形,看看这次又有什么发现?还是自己上来。
折后你发现了什么?(可能的回答:没有重合、对折后两边不一样)它们有没有重合?一点点重合都没有吗?
(有一点重合)
拿一个对称图形和同学折过的不对称图形比较。这个图形对折后重合了,这个也重合了,那这两种重合有什么不一样吗?
(可能的回答:这个全部重合了,这个没有)
这些对称的图形对折后全部重合了,也就是完全重合了!
(师在“重合”前板书:完全)而不对称图形只是部分重合。
好,谢谢你们,请将图形放这(不对称图形下黑板)
大家的表现非常出色,奖励一下我们自己,来拍拍手吧!
“一——二——停!”我们的两只手掌现在是——
(生齐说:完全重合)
三、认识对称轴,对称轴的画法
同学们都很聪明,课前你们都准备了彩纸、剪刀,如果请你用这些材料创作一个对称图形,行吗?
1、请将你创作的对称图形,慢慢打开,问:你们发现了什么?
(中间有一条折痕)
大家把手中的对称图形举起来,看看是不是每个对称图形中间——都有一条折痕。这些折痕的左右两边——(生齐说:完全重合)。
这条折痕所在的直线,有它独有的名称叫做“对称轴”。
(在“对称图形”前板书:轴)
像这样的图形,我们就把它们叫做“轴对称图形”。
(师手指板书,边说边把“对折——完全重合——轴对称图形”连起来)
现在大家知道了这个图形是——轴对称图形。这个呢?这个呢?他们都是——轴对称图形。接下来请你看着自己创作的图形说说。
谁来说说,怎样的图形是轴对称图形?
可以上来拿一个轴对称图形说。请学生用自己的语言说。
2、师拿一张轴对称图形,随便折两下。
这是一个轴对称图形吗?是的。师随便折两下。
谁来说说这个轴对称图形的对称轴是那条?
(一条都不是。)为什么?
只有对折后两边完全重合的折痕才是对称轴。
请你来折出它的对称轴。通常我们用点划线表示对称轴。
师示范。请你在所创作的轴对称图形上用点划线表示出对称轴。
四、平面图形中的轴对称图形,及它们的对称轴各有几条。
1、对于轴对称图形,其实我们并不陌生,在我们认识的一些平面图形中应该就有一些是轴对称图形。我们先回忆一下学习过的平面图形有哪些?
(可能的回答:正方形、长方形、平行四边形、圆形、梯形、三角形等等)(教师板书,适当布局)
同学们说的是否正确呢?用什么办法来证明?(对折)如果它是轴对称图形,那它有几条对称轴呢?
好,那我们就拿出课前准备的平面图形,用对折的方法来证明,注意如果它有对称轴请你折出来。
结论出来了吗?现在你的判断和刚才还是一样的吗?
3、问:你想汇报什么?学生汇报。教师机动回答,回答语可有:
这位同学既能给出判断结果,又能说出判断的理由,非常好。
看来,仅靠经验、观察得出的结论有时并不准确,还需要动手实验进行验证。
能抓住轴对称图形的特征进行分析,不错!
也许一般的平行四边形不是轴对称图形,但有些特殊的平行四边形却是比如:长方形和正方形。以此类推……
圆有无数条对称轴。所有的圆都是轴对称图形。
讨论平行四边形、梯形、三角形时,我们既要考虑一般的图形,又要考虑特殊的图形。但是关于圆形,我们却无需考虑这么多,正如你所说的,所有的圆都是轴对称图形,不存在什么特殊的情况。看来,数学学习中,具体的问题还得具体对待。
(一般三角形、一般梯形、直角梯形、一般平行四边形不是轴对称图形,等腰三角形、等腰梯形、正三角形、长方形、正方形和圆都是轴对称图形)等腰梯形(1条),正五边形(5条),圆(无数条)
4、用测量的方法找对称轴。
刚才,大家都用对折的方法找出了他们的对称轴,但是如果老师请你在黑板面上找出对称轴呢?
大家都有一张长方形纸,假设它就是不能对折的黑板面,怎么画出它的对称轴?(我们可以用测量的方法,来找出对边的中点,连结中点。用同样的方法,我们可以画出另一条对称轴。
现在请同学们打开书本,画出书上长方形的对称轴。(小组内交流检查)
五、练习
1、学习了什么是轴对称图形,现在请在你身边的物体上找出三个轴对称图形。(瓷砖面、电视机柜、衣服、国旗?、凳面、桌面)
问:国旗是轴对称图形吗?
产生冲突。说明:不但要观察外形,还要观察里面的图案。
2、判断国旗是否是轴对称图形。
3、找阿拉伯数字中的轴对称图形
4、领略窗花的美丽,再从中找到创作的灵感,创作轴对称图形。教师可出示一些指导性图片。
选择一些贴到黑板上,最后出示“美”字。
总结:轴对称图形非常美丽,因此被广泛的运用于服装、家具、交通、商标等方面的设计中,希望大家能够运用今天的知识,把我们的教室、把你的家以后把我们的祖国装扮得更漂亮。
五年级数学旋转教案篇4
【教学目标】
1.使学生通过观察、猜想、验证、理解并掌握3的倍数的特征。
2.引导学生学会判断一个数能否被3整除。
3.培养学生分析、判断、概括的能力。
【重点难点】
理解并掌握3的倍数的特征。
【复习导入】
1.学生口述2的倍数的特征,5的倍数的特征。
2.练习:下面哪些数是2的倍数?哪些数是5的倍数?
3241533452460986756
教师:看来同学们对于2、5的倍数已经掌握了,那么3的倍数的特征是不是也只看个位就行了?这节课,我们就一起来研究3的倍数的特征。
板书课题:3的倍数的特征。
【新课讲授】
1.猜一猜:3的倍数有什么特征?
2.算一算:先找出10个3的倍数。
3×1=33×2=63×3=9
3×4=123×5=153×6=18
3×7=213×8=243
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度铁路货物装卸吊车租赁合同2篇
- 年度设备维修保养服务合同2024
- 2024年度建筑项目进度管理与控制合同
- 2024年度园林绿化监理合同
- 托管班教师聘用合同版
- 2024年度房屋租赁及装修改造合同
- 月租房合同书
- 2024年度软件开发合同:企业级信息管理系统的定制开发与运维服务2篇
- 2024物业服务合同3篇
- 二零二四年度二手房交易合同(标的:石龙镇中央豪门别墅)2篇
- 院感年度工作总结
- 南京市2023-2024学年九年级上学期期末英语试卷(含答案解析)
- 《美丽的颜色》核心素养课件
- 废弃资源循环利用技术创新
- 生物分离工程吸附分离及离子交换
- 楼顶发光字采购安装投标方案
- 《人员烫伤应急预案》课件
- 精神科护理技能-暴力行为的防范与护理
- 第十二课、世界的人口(世界人口的数量与增长)
- 新能源基础知识入门
- 软硬件集成方案
评论
0/150
提交评论