版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章特殊的平行四边形章末提高训练1.如图,在△ABC中,BD平分∠ABC交AC于D,作DE∥BC交AB于点E,作DF∥AB交BC于点F.(1)求证:四边形BEDF是菱形;(2)若∠BED=150°,∠C=45°,CD=3,求菱形BEDF的周长.2.如图,矩形ABCD中,点E,F分别在BC,DE上,DF=CE,BC=DE.求证:∠AFD=90°.3.已知,如图所示的一张矩形纸片ABCD(AD>AB),O是对角线AC的中点,过点O的直线EF⊥AC交AD边于E,交BC边于F.(1)求证:四边形AFCE是菱形;(2)若AE=13cm,△ABF的周长为30cm,求△ABF的面积.4.如图,在正方形ABCD中,AB=,E为正方形ABCD内一点,DE=AB,∠EDC=α(0°<α<90°),连结CE,AE,过点D作DF⊥AE,垂足为点F,交CE的延长线于点G,连结AG.(1)当α=20°时,则∠AEC=;(2)判断△AEG的形状,并说明理由;(3)当GF=1时,求CE的长.5.已知正方形ABCD,点F是射线DC上一动点(不与C、D重合),连接AF并延长交直线BC于点E,交BD于点H,连接CH,过点C作CG⊥HC交AE于点G.(1)若点F在边CD上,如图1.①证明:∠DAH=∠DCH;②猜想线段CG与EF的关系并说明理由;(2)取DF中点M,连结MG,若MG=4,正方形边长为6,求BE的长.6.如图,AD是▱ABDE的对角线,∠ADE=90°,延长ED至点C,使DC=ED,连接AC交BD于点O,连接BC.(1)求证:四边形ABCD是矩形;(2)连接OE,若AD=4,AB=2,求OE的长.7.在△ABC中,过A作BC的平行线,交∠ACB的平分线于点D,点E是BC上一点,连接DE,交AB于点F,∠CAD+∠BED=180°.(1)如图1,求证:四边形ACED是菱形;(2)如图2,若∠ACB=90°,BC=2AC,点G、H分别是AD、AC边中点,连接CG、EG、EH,不添加字母和辅助线,直接写出图中与△CEH所有的全等的三角形.8.如图,在正方形ABCD中,P是对角线BD的一点,点E在AD的延长线上,且PA=PE,PE交CD于点F.(1)求证:PC=PE;(2)若PD=DE,求证:BP=BC.9.如图,四边形ABCD是平行四边形,过点A作AE⊥BC交CB的延长线于点E,点F在BC上,且CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)连接BD,若∠ABD=90°,AE=4,CF=2,求BD的长.10.如图,在矩形ABCD中,AC,BD交于点O,点E,F分别在AO,DO上,且AE=DF.(1)求证:∠EBO=∠FCO.(2)若∠EBO=30°,CF⊥BD,BC=4,求△COF的面积.11.如图,矩形ABCD的对角线AC、BD相交于点O,∠AOB=60°.(1)如图1,求证:△AOB为等边三角形.(2)如图2,若AE平分∠BAD交BC于点E,连接OE,请直接写出图中除等边三角形外的所有等腰三角形.12.如图,在平行四边形ABCD中,BC=2AB,AB⊥AC,分别在边BC,AD上的点E与点F关于AC对称,连接EF,AE,CF,DE.(1)求证:四边形AECF为菱形;(2)求证:AE⊥DE.13.如图,在△ABC中,∠ACB=90°,D点是AB的中点,DE、DF分别是△BDC、△ADC的角平分线.(1)求∠CFD的度数;(2)求证:四边形FDEC是矩形.14.在矩形ABCD中,AB=4,BC=3,E是AB边上一点,连接CE,过点E作EF⊥CE交AD于点F,作∠AEH=∠BEC,交射线FD于点H,交射线CD于点N.(1)如图1,当点H与点F重合时,求BE的长;(2)如图2,当点H在线段FD上时,用等式表示线段BE与DN之间的数量关系(其中2<BE≤3),并证明.15.如图,点E为▱ABCD的边AD上的一点,连接EB并延长,使BF=BE,连接EC并延长,使CG=CE,连接FG.H为FG的中点,连接DH,AF.(1)若∠BAE=70°,∠DCE=20°,求∠DEC的度数;(2)求证:当∠FAD=90°时,四边形AFHD为矩形.16.如图,在平行四边形ABCD中,BE⊥AD,BF⊥CD,垂足分别为E,F,且AE=CF.(1)求证:平行四边形ABCD是菱形;(2)若DB=10,AB=13,求平行四边形ABCD的面积.17.在矩形ABCD中,8个完全相同的小正方形组成的L型模板如图放置,L型模板有四个顶点落在该矩形的边上.求证:CD+BF=AD.18.如图,已知平行四边形ABCD中,M,N是BD上两点,且BM=DN,AC=2OM.(1)求证:四边形AMCN是矩形;(2)若∠BAD=135°,CD=2,AB⊥AC,求对角线MN的长.19.如图,在正方形ABCD中,点E在边BC上,AE交BD于点F,DG⊥AE于G,∠DGE的平分线GH分别交BD,CD于点P,H,连接FH.(1)求证:∠DHG=∠DFA;(2)求证:FH∥BC;(3)求:的值.20.如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F,过点F做FG⊥BC于点G,连接AC.易证:AC=(EC+FG).(提示:取AB的中点M,连接EM)(1)当点E是BC边上任意一点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 汽车销售联盟合作协议
- 房屋建筑施工合同抵押
- 公司团队建设场地租赁协议
- 赛车场地坪施工合同
- 关于新学期学习计划模板合集七篇
- 关于幸福的演讲稿模板汇编8篇
- 中秋节晚会领导精彩致辞范文(7篇)
- 【初中道法】探问人生目标(课件)-2024-2025学年七年级道德与法治上册(统编版2024)
- 海洋环境保护理论
- 【初中道法】集体生活成就我+课件-2024-2025学年统编版道德与法治七年级上册
- 仓库管理中的客户服务和沟通技巧
- 规划选址及用地预审
- 土砂石料厂项目融资计划书
- 2024年给药错误护理不良事件分析持续改进
- 邮政营销策划方案
- 国际贸易法与跨境业务合规的风险管理与应对策略
- 麻醉科临床诊疗指南2020版
- 供应商QSA-QPA评鉴表
- 人教版2023-2024学年数学六年级上册 第四单元《比》单元真题拔高卷(A4 原卷)人教版
- 【行政管理社会调查计划+调查记录表+调查报告5600字】
- 餐券模板完整
评论
0/150
提交评论