![《随机模拟》设计_第1页](http://file4.renrendoc.com/view/1b9266515c8de6f1ced3594e867ddb2d/1b9266515c8de6f1ced3594e867ddb2d1.gif)
![《随机模拟》设计_第2页](http://file4.renrendoc.com/view/1b9266515c8de6f1ced3594e867ddb2d/1b9266515c8de6f1ced3594e867ddb2d2.gif)
![《随机模拟》设计_第3页](http://file4.renrendoc.com/view/1b9266515c8de6f1ced3594e867ddb2d/1b9266515c8de6f1ced3594e867ddb2d3.gif)
![《随机模拟》设计_第4页](http://file4.renrendoc.com/view/1b9266515c8de6f1ced3594e867ddb2d/1b9266515c8de6f1ced3594e867ddb2d4.gif)
![《随机模拟》设计_第5页](http://file4.renrendoc.com/view/1b9266515c8de6f1ced3594e867ddb2d/1b9266515c8de6f1ced3594e867ddb2d5.gif)
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《随机模拟》教学设计【教学目标】1.了解随机数的意义.2.会用模拟方法(包括计算器产生随机数进行模拟)估计概率.3.理解用模拟方法估计概率的实质【教学重点】理解用模拟方法估计概率的实质【教学难点】理解用模拟方法估计概率的实质【课时安排】1课时【教学过程】认知初探1.产生随机数的方法(1)利用计算器或计算机软件产生随机数.(2)构建模拟试验产生随机数.2.蒙特卡洛方法利用随机模拟解决问题的方法为蒙特卡洛方法.思考:用频率估计概率时,用计算机模拟试验产生随机数有什么优点?[提示]用频率估计概率时,需做大量的重复试验,费时费力,并且有些试验具有破坏性,有些试验无法真正进行.因此利用计算机进行随机模拟试验就成为一种很重要的替代方法,它可以在短时间内多次重复地来做试验,不需要对试验进行具体操作,可以广泛应用到各个领域.小试牛刀1.利用抛硬币产生随机数1和2,出现正面表示产生的随机数为1,出现反面表示产生的随机数为2.小王抛两次,则出现的随机数之和为3的概率为 ()A【解析】抛掷硬币两次,产生的随机数的情况有(1,1),(1,2),(2,1),(2,2)共四种,其中随机数之和为3的情况有(1,2),(2,1)两种,故所求概率为.2.下列不能产生随机数的是()A.抛掷骰子试验B.抛硬币C.计算器D.正方体的六个面上分别写有1,2,2,3,4,5,抛掷该正方体D[D项中,出现2的概率为eq\f(2,6),出现1,3,4,5的概率均是eq\f(1,6),则D项不能产生随机数.]3.某种心脏手术,成功率为,现采用随机模拟方法估计“3例心脏手术全部成功”的概率.先利用计算器或计算机产生0~9之间取整数值的随机数,由于成功率是,故我们用0,1,2,3表示手术不成功,4,5,6,7,8,9表示手术成功;再以每3个随机数为一组,作为3例手术的结果.经随机模拟产生如下10组随机数:812,832,569,683,271,989,730,537,925,907由此估计“3例心脏手术全部成功”的概率为()A. B.C. D.A解析:由10组随机数,知4~9中恰有三个的随机数有569,989两组,故所求的概率为P=eq\f(2,10)=.4.在用随机模拟方法解决“盒中仅有4个白球和5个黑球,从中取4个,求取出2个白球2个黑球的概率”问题时,可让计算机产生1-9的随机整数,并用1-4代表白球,用5-9代表黑球.因为是摸出4个球,所以每4个随机数作为一组.若得到的一组随机数为“4678”,则它代表的含义是答案:摸出的4个球中,只有1个白球解析:分析题意,易知数字4代表白球,数字6,7,8代表黑球,因此这组随机数的含义为摸出的4个球中,只有1个白球.例题讲解随机数的产生方法【例1】一体育代表队共有21名水平相当的运动员,现从中抽取11人参加某场比赛,其中运动员甲必须参加.写出利用随机数抽取的过程.解:(1)把除甲之外的20名运动员编号,号码为1,2,3,…,19,20;(2)用计算器的随机函数RandInt(1,20)或计算机的随机函数RANDBETWEEN(1,20)产生10个1~20之间的整数值随机数,如果有重复,就重新产生一个;(3)以上号码对应的10名运动员与甲运动员就是要抽取的对象.方法总结1.产生随机数的方法有抽签法、利用计算机或计算器产生随机数的随机模拟方法等.抽签法产生的随机数能保证机会均等,而计算器或计算机产生的随机数是伪随机数,不能保证等可能性,但是后者较前者速度快,操作简单,省时省力.2.用产生随机数的方法抽取样本要注意以下两点:(1)进行正确的编号,并且编号要连续;(2)正确把握抽取的范围和容量.当堂练习11.某校高一年级共20个班,1200名学生,期中考试时如何把学生分配到40个考场中去?[解]要把1200人分到40个考场,每个考场30人,可用计算机完成.(1)按班级、学号顺序把学生档案输入计算机.(2)用随机函数按顺序给每个学生一个随机数(每人都不相同).(3)使用计算机的排序功能按随机数从小到大排列,可得到1200名学生的考试号0001,0002,…,1200,然后0001~0030为第一考场,0031~0060为第二考场,依次类推.简单的随机模拟试验的应用【例2】盒中有大小,形状相同的5个白球,2个黑球,用随机模拟法求下列事件的概率:(1)任取一球,得到白球.(2)任取三球,都是白球.思路点拨:产生7个随机数,其中5个表示白球,2个表示黑球,计算频率,然后估计概率.【解析】用1,2,3,4,5表示白球,6,7表示黑球.(1)步骤:①利用计算器或计算机可以产生1到7的整数随机数,每一个数一组,统计组数n;②统计这n组数中小于6的组数m;③任取一球,得到白球的概率估计值是.(2)步骤:①利用计算器或计算机可以产生1到7的整数随机数,每三个数一组(每组数字不重复),统计组数a;②统计这a组数中,每个数字均小于6的组数b;③任取三球,都是白球的概率估计值是.方法总结在设计随机模拟试验时,注意以下两点:(1)要根据具体的事件设计恰当的试验,使试验能够真正地模拟随机事件.(2)注意用不同的随机数来表示不同的随机事件的发生.当堂练习2在一个盒中装有10支圆珠笔,其中7支一级品,3支二级品,任取一支,用模拟方法求取到一级品的概率.[解]设事件A:“取到一级品”.(1)用计算机的随机函数RANDBETWEEN(1,10)或计算器产生1到10之间的整数随机数,分别用1,2,3,4,5,6,7表示取到一级品,用8,9,10表示取到二级品.(2)统计试验总次数N及其中出现1至7之间数的次数N1.(3)计算频率fn(A)=eq\f(N1,N),即为事件A的概率的近似值.较复杂的随机模拟试验的应用【例3】种植某种树苗,成活率为,请采用随机模拟的方法估计该树苗种植5棵恰好4棵成活的概率.写出模拟试验的过程,并求出所求概率.[思路探究]用计算机产生10个随机数,用其中9个代表成活,1个代表没成活,5个随机数一组即可计算.[解]先由计算机随机函数RANDBETWEEN(0,9),或计算器的随机函数RANDI(0,9)产生0到9之间取整数值的随机数,指定1至9的数字代表成活,0代表不成活,再以每5个随机数为一组代表5次种植的结果,经随机模拟产生随机数,例如,如下30组随机数:698016609777124229617423531516297472494557558652587413023224374454434433315271202178258555610174524144134922017036283005949765617334783166243034401117这就相当于做了30次试验,在这些数组中,如果恰有一个0,则表示恰有4棵成活,共有9组这样的数,于是我们得到种植5棵这样的树苗恰有4棵成活的概率近似为eq\f(9,30)=.方法总结利用随机模拟估计概率应关注三点用整数随机数模拟试验估计概率时,首先要确定随机数的范围和用哪些数代表不同的试验结果.我们可以从以下三方面考虑:(1)当试验的基本事件等可能时,基本事件总数即为产生随机数的范围,每个随机数代表一个基本事件;(2)研究等可能事件的概率时,用按比例分配的方法确定表示各个结果的数字个数及总个数;(3)当每次试验结果需要n个随机数表示时,要把n个随机数作为一组来处理,此时一定要注意每组中的随机数字能否重复.当堂练习3甲、乙两支篮球队进行一局比赛,甲获胜的概率为,若采用三局两胜制举行一次比赛,现采用随机模拟的方法估计乙获胜的概率.先利用计算器或计算机生成0到9之间取整数值的随机数,用0,1,2,3,4,5表示甲获胜;6,7,8,9表示乙获胜,这样能体现甲获胜的概率为.因为采用三局两胜制,所以每3个随机数作为一组.假设产生30组随机数.034743738636964736614698637162332616804560111410959774246762428114572042533237322707360751据此估计乙获胜的概率约为________.eq\f(11,30)解析:相当于做了30次试验.如果6,7,8,9中恰有2个或3个数出现,就表示乙获胜,它们分别是738,636,964,736,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公共部位装修施工合同范本
- 社区护理文书的标准化编写流程
- 生物医药技术对商业决策的影响分析
- 电力工程安全监管的培训体系建设
- 美妆行业合作协议书(2篇)
- 低压电线路改造施工合同范本
- 标准借款合同模板(民间借贷)正式版
- 购房合同保密协议
- 山东省青岛市即墨区2024-2025学年高二上学期11月期中考试生物试题(解析版)
- 电子与智能化工程项目团队的配置要点
- EAM资产管理的人工智能与大数据应用
- 橙子信用查询报告
- 宜黄县二都镇高山饰面用花岗岩开采以及深加工项目环评报告
- 高一数学必修1课件组合
- 血液科护士的恶性肿瘤护理
- 全国创新杯计算机类说课大赛一等奖作品《神奇的Vloup函数》说课课件
- 《餐饮渠道开发方案》课件
- 小学人教版五年级上册数学填空达标练习50题
- 北京市西城区2023-2024学年五年级上学期期末数学试卷
- 附属医院神经内科中长期发展规划五年发展规划
- 营养质控中心管理制度
评论
0/150
提交评论