![2023届江苏省无锡市宜城环科园教联盟数学九年级第一学期期末综合测试模拟试题含解析_第1页](http://file4.renrendoc.com/view/15f78675e16e397f0a17798df6b4533c/15f78675e16e397f0a17798df6b4533c1.gif)
![2023届江苏省无锡市宜城环科园教联盟数学九年级第一学期期末综合测试模拟试题含解析_第2页](http://file4.renrendoc.com/view/15f78675e16e397f0a17798df6b4533c/15f78675e16e397f0a17798df6b4533c2.gif)
![2023届江苏省无锡市宜城环科园教联盟数学九年级第一学期期末综合测试模拟试题含解析_第3页](http://file4.renrendoc.com/view/15f78675e16e397f0a17798df6b4533c/15f78675e16e397f0a17798df6b4533c3.gif)
![2023届江苏省无锡市宜城环科园教联盟数学九年级第一学期期末综合测试模拟试题含解析_第4页](http://file4.renrendoc.com/view/15f78675e16e397f0a17798df6b4533c/15f78675e16e397f0a17798df6b4533c4.gif)
![2023届江苏省无锡市宜城环科园教联盟数学九年级第一学期期末综合测试模拟试题含解析_第5页](http://file4.renrendoc.com/view/15f78675e16e397f0a17798df6b4533c/15f78675e16e397f0a17798df6b4533c5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,某物体由上下两个圆锥组成,其轴截面中,,.若下部圆锥的侧面积为1,则上部圆锥的侧面积为()A. B. C. D.2.已知关于x的一元二次方程有一个根为,则a的值为()A.0 B. C.1 D.3.已知将二次函数y=x²+bx+c的图象向右平移2个单位,再向下平移3个单位,所得图象的解析式为y=x²-4x-5,则b,c的值为()A.b=1,c=6 B.b=1.c=-5 C.b=1.c=-6 D.b=1,c=54.在同一平面直角坐标系中,函数y=x﹣1与函数的图象可能是A. B. C. D.5.两直线a、b对应的函数关系式分别为y=2x和y=2x+3,关于这两直线的位置关系下列说法正确的是A.直线a向左平移2个单位得到b B.直线b向上平移3个单位得到aC.直线a向左平移个单位得到b D.直线a无法平移得到直线b6.某校准备修建一个面积为200平方米的矩形活动场地,它的长比宽多12米,设场地的宽为x米,根据题意可列方程为()A.x(x﹣12)=200 B.2x+2(x﹣12)=200C.x(x+12)=200 D.2x+2(x+12)=2007.抛物线y=2(x+3)2+5的顶点坐标是()A.(3,5) B.(﹣3,5) C.(3,﹣5) D.(﹣3,﹣5)8.如图,在正方形中,点是对角线的交点,过点作射线分别交于点,且,交于点.给出下列结论:;C;四边形的面积为正方形面积的;.其中正确的是()A. B. C. D.9.将抛物线向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线解析式为()A. B.C. D.10.如图,在菱形ABCD中,∠BAD=120°,AB=2,点E是AB边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点B时,点F的运动路径长为()A. B. C.2 D.二、填空题(每小题3分,共24分)11.如图,点是函数图象上的一点,连接,交函数的图象于点,点是轴上的一点,且,则的面积为_________.12.如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=上运动,则k的值为_____.13.如图所示的弧三角形,又叫莱洛三角形,是机械学家莱洛首先进行研究的.弧三角形是这样画的:先画一个正三角,然后分别以三个顶点为圆心,边长长为半径画弧得到的三角形.若中间正三角形的边长是10,则这个莱洛三角形的周长是____________.14.某市为了扎实落实脱贫攻坚中“两不愁、三保障”的住房保障工作,去年已投入5亿元资金,并计划投入资金逐年增长,明年将投入7.2亿元资金用于保障性住房建设,则这两年投入资金的年平均增长率为________.15.如图,若菱形ABCD的边长为2cm,∠A=120°,将菱形ABCD折叠,使点A恰好落在菱形对角线的交点O处,折痕为EF,则EF=_____cm,16.如图,四边形ABCD中,∠A=∠B=90°,AB=5cm,AD=3cm,BC=2cm,P是AB上一点,若以P、A、D为顶点的三角形与△PBC相似,则PA=_____cm.17.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为_______.18.超市经销一种水果,每千克盈利10元,每天销售500千克,经市场调查,若每千克涨价1元,日销售量减少20千克,现超市要保证每天盈利6000元,每千克应涨价为______元.三、解答题(共66分)19.(10分)如图,在中,连接,点,分别是的点(点不与点重合),,相交于点.(1)求,的长;(2)求证:~;(3)当时,请直接写出的长.20.(6分)某校薛老师所带班级的全体学生每两人都握一次手,共握手1540次,求薛老师所带班级的学生人数.21.(6分)如图,在中,,为上一点,,.(1)求的长;(2)求的值.22.(8分)解方程:x2-5=4x.23.(8分)(1)将如图①所示的△ABC绕点C旋转后,得到△CA'B'.请先画出变换后的图形,再写出下列结论正确的序号是.
①;②线段AB绕C点旋转180°后,得到线段A'B';③;④C是线段BB'的中点.在第(1)问的启发下解答下面问题:(2)如图②,在中,,D是BC的中点,射线DF交BA于E,交CA的延长线于F,请猜想∠F等于多少度时,BE=CF?(直接写出结果,不需证明)(3)如图③,在△ABC中,如果,而(2)中的其他条件不变,若BE=CF的结论仍然成立,那么∠BAC与∠F满足什么数量关系(等式表示)?并加以证明.24.(8分)学校为了解九年级学生对“八礼四仪”的掌握情况,对该年级的500名同学进行问卷测试,并随机抽取了10名同学的问卷,统计成绩如下:得分109876人数33211(1)计算这10名同学这次测试的平均得分;(2)如果得分不少于9分的定义为“优秀”,估计这500名学生对“八礼四仪”掌握情况优秀的人数;(3)小明所在班级共有40人,他们全部参加了这次测试,平均分为7.8分.小明的测试成绩是8分,小明说,我的测试成绩在班级中等偏上,你同意他的观点吗?为什么?25.(10分)已知在△ABC中,AB=BC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED.(1)求证:ED=DC;(2)若CD=6,EC=4,求AB的长.26.(10分)在平面直角坐标系中,已知抛物线y1=x2﹣4x+4的顶点为A,直线y2=kx﹣2k(k≠0),(1)试说明直线是否经过抛物线顶点A;(2)若直线y2交抛物线于点B,且△OAB面积为1时,求B点坐标;(1)过x轴上的一点M(t,0)(0≤t≤2),作x轴的垂线,分别交y1,y2的图象于点P,Q,判断下列说法是否正确,并说明理由:①当k>0时,存在实数t(0≤t≤2)使得PQ=1.②当﹣2<k<﹣0.5时,不存在满足条件的t(0≤t≤2)使得PQ=1.
参考答案一、选择题(每小题3分,共30分)1、C【分析】先证明△ABD为等边三角形,得到AB=AD=BD,∠A=∠ABD=∠ADB=60°,由求出∠CBD=∠CDB=30°,从而求出BC和BD的比值,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,从而得到上部圆锥的侧面积.【详解】解:∵∠A=60°,AB=AD,
∴△ABD为等边三角形,
∴AB=AD=BD,∠A=∠ABD=∠ADB=60°,∵∠ABC=90°,
∴∠CBD=30°,而CB=CD,
∴△CBD为底角为30°的等腰三角形,过点C作CE⊥BD于点E,易得BD=2BE,∵∠CBD=30°,∴BE:BC=:2,∴BD:BC=:2=:1,即AB:BC=:1,∵上面圆锥与下面圆锥的底面相同,
∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,
∴下面圆锥的侧面积=.
故选:C.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰直角三角形和等边三角形的性质.2、D【分析】根据一元二次方程的定义,再将代入原式,即可得到答案.【详解】解:∵关于x的一元二次方程有一个根为,∴,,则a的值为:.故选D.【点睛】本题考查一元二次方程,解题的关键是熟练掌握一元二次方程的定义.3、C【分析】首先抛物线平移时不改变a的值,其中点的坐标平移规律是上加下减,左减右加,利用这个规律即可得到所求抛物线的顶点坐标,然后就可以求出抛物线的解析式.【详解】解:∵y=x2-4x-5=x2-4x+4-9=(x-2)2-9,∴顶点坐标为(2,-9),∴由点的平移可知:向左平移2个单位,再向上平移3个单位,得(1,-2),则原二次函数y=ax2+bx+c的顶点坐标为(1,-2),∵平移不改变a的值,∴a=1,∴原二次函数y=ax2+bx+c=x2-2,∴b=1,c=-2.故选:C.【点睛】此题主要考查了二次函数图象与平移变换,首先根据平移规律求出已知抛物线的顶点坐标,然后求出所求抛物线的顶点坐标,最后就可以求出原二次函数的解析式.4、C【解析】试题分析:一次函数的图象有四种情况:①当,时,函数的图象经过第一、二、三象限;②当,时,函数的图象经过第一、三、四象限;③当,时,函数的图象经过第一、二、四象限;④当,时,函数的图象经过第二、三、四象限.因此,∵函数y=x﹣1的,,∴它的图象经过第一、三、四象限.根据反比例函数的性质:当时,图象分别位于第一、三象限;当时,图象分别位于第二、四象限.∵反比例函数的系数,∴图象两个分支分别位于第一、三象限.综上所述,符合上述条件的选项是C.故选C.5、C【分析】根据上加下减、左加右减的变换规律解答即可.【详解】A.直线a向左平移2个单位得到y=2x+4,故A不正确;B.直线b向上平移3个单位得到y=2x+5,故B不正确;C.直线a向左平移个单位得到=2x+3,故C正确,D不正确.故选C【点睛】此题考查一次函数与几何变换问题,关键是根据上加下减、左加右减的变换规律分析.6、C【解析】解:∵宽为x,长为x+12,∴x(x+12)=1.故选C.7、B【解析】解:抛物线y=2(x+3)2+5的顶点坐标是(﹣3,5),故选B.8、B【分析】根据全等三角形的判定(ASA)即可得到正确;根据相似三角形的判定可得正确;根据全等三角形的性质可得正确;根据相似三角形的性质和判定、勾股定理,即可得到答案.【详解】解:四边形是正方形,,,,,,故正确;,点四点共圆,∴,∴,故正确;,,,故正确;,,又,是等腰直角三角形,,,,,,,,,,又中,,,,故错误,故选.【点睛】本题考查全等三角形的判定(ASA)和性质、相似三角形的性质和判定、勾股定理,解题的关键是掌握全等三角形的判定(ASA)和性质、相似三角形的性质和判定.9、B【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】将化为顶点式,得.将抛物线向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为,故选B.【点睛】本题考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.10、B【分析】如图,根据圆周角定理可得点F在以BC为直径的圆上,根据菱形的性质可得∠BCM=60°,根据圆周角定理可得∠BOM=120°,利用弧长公式即可得答案.【详解】如图,取的中点,中点M,连接OM,BM,∵四边形是菱形,∴BM⊥AC,∴当点与重合时,点与中点重合,∵,∴点的运动轨迹是以为直径的圆弧,∵四边形是菱形,,∴,∴,∴的长.故选:B.【点睛】本题考查菱形的性质、圆周角定理、弧长公式及轨迹,根据圆周角定理确定出点F的轨迹并熟练掌握弧长公式是解题关键.二、填空题(每小题3分,共24分)11、4【分析】作AE⊥x轴于点E,BD⊥x轴于点D得出△OBD∽△OAE,根据面积比等于相似比的平方结合反比例函数的几何意义求出,再利用条件“AO=AC”得出,进而分别求出和相减即可得出答案.【详解】作AE⊥x轴于点E,BD⊥x轴于点D∴△OBD∽△OAE∴根据反比例函数的几何意义可得:,∴∵AO=AC∴OE=EC∴∴,∴故答案为4.【点睛】本题考查的是反比例函数与几何的综合,难度系数较大,需要熟练掌握反比例函数的几何意义.12、1【分析】根据题意得出△AOD∽△OCE,进而得出,即可得出k=EC×EO=1.【详解】解:连接CO,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点E,∵连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,∴CO⊥AB,∠CAB=10°,则∠AOD+∠COE=90°,∵∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴=tan60°=,∴==1,∵点A是双曲线y=-在第二象限分支上的一个动点,∴S△AOD=×|xy|=,∴S△EOC=,即×OE×CE=,∴k=OE×CE=1,故答案为1.【点睛】本题主要考查了反比例函数与一次函数的交点以及相似三角形的判定与性质,正确添加辅助线,得出△AOD∽△OCE是解题关键.13、10π【分析】根据正三角形的有关计算求出弧的半径和圆心角,根据弧长的计算公式求解即可.【详解】解:如图:
∵△ABC是正三角形,
∴∠BAC=60°,
∴的长为:,
∴莱洛三角形的周长=.故答案为:.【点睛】本题考查的是正多边形和圆的知识,理解弧三角形的概念、掌握正多边形的中心角的求法是解题的关键.14、20%.【分析】一般用增长后的量=增长前的量×(1+增长率),再根据题意列出方程5(1+x)2=7.2,即可解答.【详解】设这两年中投入资金的平均年增长率是x,由题意得:5(1+x)2=7.2,解得:x1=0.2=20%,x2=﹣2.2(不合题意舍去).答:这两年中投入资金的平均年增长率约是20%.故答案是:20%.【点睛】此题考查一元二次方程的应用,解题关键在于列出方程.15、【分析】连接AC、BD,根据题意得出E、F分别为AB、AD的中点,EF是△ABD的中位线,得出EF=BD,再由已知条件根据三角函数求出OB,即可求出EF.【详解】解:连接AC、BD,如图所示:∵四边形ABCD是菱形,∴AC⊥BD,∵将菱形ABCD折叠,使点A恰好落在菱形对角线的交点O处,折痕为EF,∴AE=EO,AF=OF,∴E、F分别为AB、AD的中点,∴EF是△ABD的中位线,∴EF=BD,∵菱形ABCD的边长为2cm,∠A=120°,∴AB=2cm,∠ABC=60°,∴OB=BD,∠ABO=30°,∴OB=AB•cos30°=2×=,∴EF=BD=OB=;故答案为:.【点睛】此题考查菱形的性质,折叠的性质,锐角三角函数,三角形中位线的判定及性质,由折叠得到EF是△ABD的中位线,由此利用锐角三角函数求出OB的长度达到解决问题的目的.16、2或1【分析】根据相似三角形的判定与性质,当若点A,P,D分别与点B,C,P对应,与若点A,P,D分别与点B,P,C对应,分别分析得出AP的长度即可.【详解】解:设AP=xcm.则BP=AB﹣AP=(5﹣x)cm以A,D,P为顶点的三角形与以B,C,P为顶点的三角形相似,①当AD:PB=PA:BC时,,解得x=2或1.②当AD:BC=PA+PB时,,解得x=1,∴当A,D,P为顶点的三角形与以B,C,P为顶点的三角形相似,AP的值为2或1.故答案为2或1.【点睛】本题考查了相似三角形的问题,掌握相似三角形的性质以及判定定理是解题的关键.17、3n+1.【分析】根据题意和图形,可以发现图形中棋子的变化规律,从而可以求得第n个“T”字形需要的棋子个数.【详解】解:由图可得,
图①中棋子的个数为:3+1=5,
图②中棋子的个数为:5+3=8,
图③中棋子的个数为:7+4=11,
……
则第n个“T”字形需要的棋子个数为:(1n+1)+(n+1)=3n+1,
故答案为3n+1.【点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中棋子的变化规律,利用数形结合的思想解答.18、5或1【分析】设每千克水果应涨价x元,得出日销售量将减少20x千克,再由盈利额=每千克盈利×日销售量,依题意得方程求解即可.【详解】解:设每千克水果应涨价x元,依题意得方程:(500-20x)(1+x)=6000,整理,得x2-15x+50=0,解这个方程,得x1=5,x2=1.答:每千克水果应涨价5元或1元.故答案为:5或1.【点睛】本题考查了一元二次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.三、解答题(共66分)19、(1)AD=10,BD=10;(2)见解析;(3)AG=.【分析】(1)由可证明△ABC∽△DAC,通过相似比即可求出AD,BD的长;(2)由(1)可证明∠B=∠DAB,再根据已知条件证明∠AFC=∠BEF即可;(3)过点C作CH∥AB,交AD的延长线于点H,根据平行线的性质得到,计算出CH和AH的值,由已知条件得到≌,设AG=x,则AF=15-x,HG=18-x,再由平行线的性质得到,表达出即可解出x,即AG的值.【详解】解:(1)∵,∴,又∵∠ACB=∠DCA,∴△ABC∽△DAC,∴,即,解得:CD=8,AD=10,∴BD=BC-CD=18-8=10,∴AD=10,BD=10;(2)由(1)可知,AD=BD=10,∴∠B=∠DAB,∵∠AFE=∠B+∠BEF,∴∠AFC+∠CFE=∠B+∠BEF,∵,∴∠AFC=∠BEF,又∵∠B=∠DAB,∴~;(3)如图,过点C作CH∥AB,交AD的延长线于点H,∴,即,解得:CH=12,HD=8,∴AH=AD+HD=18,若,则≌;∴BF=AG,设AG=x,则AF=15-x,HG=18-x,∵CH∥AB,∴,即,解得:,(舍去)∴AG=.【点睛】本题考查了相似三角形的判定与性质以及平行线分线段成比例,解题的关键是熟悉相似三角形的判定,并灵活作出辅助线.20、薛老师所带班级有56人.【分析】设薛老师所带班级有x人,根据题意列出方程求解即可.【详解】解:设薛老师所带班级有x人,依题意,得:x(x﹣1)=1540,整理,得:x2﹣x﹣3080=0,解得:x1=56,x2=﹣55(不合题意,舍去).答:薛老师所带班级有56人.【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.21、(1);(2).【分析】(1)根据,可设,得,再由勾股定理列出的方程求得,进而由勾股定理求;(2)过点作于点,解直角三角形求得与,进而求得结果.【详解】解:(1)∵,可设,得,∵,∴,解得,(舍去),或,∴,∵,∴,∴;(2)过点作于点,∵,可设,则,∵,∴,解得,(舍),或,∴,∴.【点睛】考核知识点:解直角三角形.理解三角函数的定义是关键.22、x1=5,x2=﹣1.【解析】试题分析:移项后,用因式分解法解答即可.试题解析:解:∵x2﹣5=4x,∴x2﹣4x﹣5=0,∴(x﹣5)(x+1)=0,∴x﹣5=0或者x+1=0,∴x1=5,x2=﹣1.23、(1)①②③④;(2);(3),证明见解析【分析】(1)通过旋转的性质可知①②③④正确;(2)可结合题意画出图形使BE=CF,然后通过测量得出猜想,再证明△BEF′是等边三角形即可证明;(3)结合(2)可进一步猜想,若∠F'=∠BED则可推出BE=CF,结合三角形外角的性质可知时∠F'=∠BED,依此证明即可.【详解】解:(1)如图①,根据旋转的性质,知①②④都是正确的,根据旋转的性质可得∠A′=∠A,∴A′B′∥AB,③正确,故答案为:①②③④.(2)∠F等于60°度时,BE=CF.
证明如下:∵D是BC的中点,∴BD=DC,如下图,将△CDF,绕点D旋转180°后,得到△BDF′,由旋转的性质可知,∠C=∠F′BC,CF=BF′∴CF∥BF′,∠F′=∠F=60°,
∴∠CAB+∠ABF′=180°,
∵∠BAC=120°,
∴∠ABF′=60°,∴∠F′EB=120°-∠ABF′-∠F′=60°,
∴△BEF′是等边三角形,
∴BE=BF′=CF.(3)数量关系:∠BAC=2∠F.证明如下:作△DBF'与△FCD关于点D成中心对称,如下图,则∠F'=∠F,FC=BF',∵∠BAC=2∠F,∠BAC=∠F+∠FEA,∴∠F=∠FEA,∴∠F'=∠F=∠BED=∠FEA,∴BE=CF.【点睛】本题考查旋转的性质,等边三角形的性质和判定,等腰三角形的性质和判定,三角形外角的性质.理解旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变是解决(1)的关键.(2)中能结合题意画出对应图形,正确猜想是解题关键;(3)中主要是要理解等腰三角形“等角对等边”.24、(1)8.6;(2)300;(3)不同意,理由见解析.【分析】(1)根据加权平均数的计算公式求平均数;(2)根据表中数据求出这10名同学中优秀所占的比例,然后再求500名学生中对“八礼四仪”掌握情况优秀的人数;(3)根据平均数和中位数的意义进行分析说明即可.【详解】解:(1)∴这10名同学这次测试的平均得分为8.6分;(2)(人)∴这500名学生对“八礼四仪”掌握情况优秀的人数为300人;(3)不同意平均数容易受极端值的影响,所以小明的测试成绩为8分,并不一定代表他的成绩在班级中等偏上,要想知道自己的成绩是否处于中等偏上,需要了解班内学生成绩的中位数.【点睛】本题考查加权平均数的计算,用样本估计总体以及平均数及中位数的意义,了解相关概念准确计算是本题的解题关键.25、(1)证明见解析;(2)AB=6.【分析】(1)根据圆内接四边形的性质得出∠DEC=∠A,根据等腰三角形的性质得出∠A=∠C,求出∠DEC=∠C,根据等腰三角形的判定得出即可;
(2)连接BD,根据圆周角定理求出∠ADB=90°,根据等腰三角形的性质求出AC长,再求出△DEC∽△BAC,得出比例式,即可求出答案.【详解】(1)证明:∵A、B、E、D四点共圆,∴∠DEC=∠A,∵AB=BC,∴∠A=∠C,∴∠DEC=∠C,∴ED=DC;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,即BD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 现代办公楼中无线智能会议系统的推广应用
- 现代办公健康管理中的精准医疗实践
- 知识产权服务在海外办公领域的挑战与机遇
- 电子政务下的社会治理模式创新研究
- 小区物业电工年终工作总结
- 月工作总结与计划
- 大班下学期班级工作总结
- 新颖年终总结开场白
- 学校后勤服务管理工作计划范文
- 小学班干部培训计划
- 设备管理人员安全培训
- 分布式光伏培训
- 山东省房屋市政工程安全监督机构人员业务能力考试题库-上(单选题)
- 2024年六西格玛黄带认证考试练习题库(含答案)
- 2024新版(北京版)三年级英语上册单词带音标
- 财务审计服务方案投标文件(技术方案)
- 养老服务机构复工复产实施方案复工复产安全生产方案
- 2024-2025学年小学科学六年级下册苏教版(2024)教学设计合集
- 9《黄山奇石》教学设计-2024-2025学年统编版语文二年级上册
- PP、PVC-风管制作安装施工作业指导书
- 新型智慧水利项目数字孪生工程解决方案
评论
0/150
提交评论