下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省滨州市博兴县店子镇中学2021-2022学年高二数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设随机变量等于A.
B.
C.
D.参考答案:B略2.已知集合等于(
) A. B. C. D.参考答案:C3.用反证法证明命题:“自然数a,b,c中恰有一个是偶数”时,要做的假设是()A.a,b,c中至少有两个偶数B.a,b,c中至少有两个偶数或都是奇数C.a,b,c都是奇数D.a,b,c都是偶数参考答案:B【考点】FC:反证法.【分析】用反证法证明某命题时,应先假设命题的否定成立,而命题的否定为:“a,b,c中至少有两个偶数或都是奇数”,由此得出结论.【解答】解:用反证法证明某命题时,应先假设命题的否定成立,而:“自然数a,b,c中恰有一个偶数”的否定为:“a,b,c中至少有两个偶数或都是奇数”,故选:B.【点评】本题主要考查用反证法证明数学命题,把要证的结论进行否定,得到要证的结论的反面,是解题的关键.4.下列命题中,真命题是
()A.
B.
C.的充要条件是
D.是的充分条件参考答案:D5.已知椭圆的左焦点为F,C与过原点的直线相交于A,B两点,连接AF,BF.若,,,则C的离心率为
(
)(A)
(B)
(C)
(D)
参考答案:B略6.两圆x2+y2=4与(x+1)2+(y﹣1)2=1的位置关系是()A.内含 B.相交 C.相切 D.相离参考答案:B【考点】圆与圆的位置关系及其判定.【专题】直线与圆.【分析】根据两圆的圆心距大于半径之差,而小于半径之和,可得两圆相交.【解答】解:两圆x2+y2=4与(x+1)2+(y﹣1)2=1的圆心距为,它大于半径之差2﹣1,而小于半径之和2+1,故两圆相交,故选:B.【点评】本题主要考查圆和圆的位置关系的判定,属于基础题.7.在各项均为正数的等比数列中,,则(
)A.4 B.6 C.8 D.8-参考答案:C8.平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()A.2x+y+5=0或2x+y﹣5=0 B.2x+y+=0或2x+y﹣=0C.2x﹣y+5=0或2x﹣y﹣5=0 D.2x﹣y+=0或2x﹣y﹣=0参考答案:A【考点】圆的切线方程.【专题】计算题;直线与圆.【分析】设出所求直线方程,利用圆心到直线的距离等于半径,求出直线方程中的变量,即可求出直线方程.【解答】解:设所求直线方程为2x+y+b=0,则,所以=,所以b=±5,所以所求直线方程为:2x+y+5=0或2x+y﹣5=0故选:A.【点评】本题考查两条直线平行的判定,圆的切线方程,考查计算能力,是基础题.9.在△ABC中,点O是斜边BC的中点,过点O的直线分别交直线AB、AC于不同的两点M、N,若,则的最大值为
(
)A.
1
B.
C.
D.2参考答案:A10.已知椭圆+=1上的一点M到焦点F1的距离为2,N是MF1的中点,O为原点,则|ON|等于()A.2 B.4 C.8 D.参考答案:B【考点】椭圆的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】首先根据椭圆的定义求出MF2=8的值,进一步利用三角形的中位线求的结果.【解答】解:根据椭圆的定义得:MF2=8,由于△MF2F1中N、O是MF1、F1F2的中点,根据中位线定理得:|ON|=4,故选:B.【点评】本题考查的知识点:椭圆的定义,椭圆的方程中量的关系,三角形中位线定理.二、填空题:本大题共7小题,每小题4分,共28分11.函数在上是减函数,则实数的取值范围是
.参考答案:略12.给出下列命题:①存在实数α,使sinαcosα=1,②函数y=sin(+x)是偶函数;③直线x=是函数y=sin(2x+)的一条对称轴;④若α、β是第一象限的角,且α>β,则sinα>sinβ.其中正确命题的序号是
.参考答案:②③【考点】命题的真假判断与应用.【专题】函数的性质及应用.【分析】求出sinαcosα取值的范围,可判断①;根据诱导公式化简函数解析式,进而根据余弦型函数的和性质,可判断②;根据正弦型函数的对称性,可判断③;举出反例α=390°、β=45°,可判断④.【解答】解:①sinαcosα=sin2α∈[﹣,],1?[﹣,],故不存在实数α,使sinαcosα=1,故①错误;②函数y=sin(+x)=﹣cosx,满足f(﹣x)=f(x),是偶函数,故②正确;③由2x+=+kπ,k∈Z得:x=﹣+kπ,k∈Z,当k=1时,直线x=是函数y=sin(2x+)的一条对称轴,故③正确;④α=390°、β=45°是第一象限的角,且α>β,但sinα=<sinβ=,故④错误.故正确的命题的序号是:②③,故答案为:②③【点评】本题考查的知识点是命题的真假判断与应用,此类题型往往综合较多的其它知识点,综合性强,难度中档.13.若正数,满足,则的最小值为_________.参考答案:314.定义“正对数”:,现有四个命题:①若,则②若,则③若,则④若,则其中的真命题有:
(写出所有真命题的编号)参考答案:①③④15.已知数列,…,计算得,….由此可猜测=.参考答案:16.设A,B分别为椭圆的右顶点和上顶点,已知椭圆C过点,当线段AB长最小时椭圆C的离心率为_______.参考答案:【分析】将代入椭圆方程可得,从而,利用基本不等式可知当时,线段长最小,利用椭圆的关系和可求得结果.【详解】椭圆过得:由椭圆方程可知:,又(当且仅当,即时取等号)当时,线段长最小
本题正确结果:【点睛】本题考查椭圆离心率的求解问题,关键是能够利用基本不等式求解和的最小值,根据等号成立条件可得到椭圆之间的关系,从而使问题得以求解.
17.若函数在其定义域内的一个子区间内不是单调函数,则实数的取值范围是
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数y=f(x),x∈D,如果对于定义域D内的任意实数x,对于给定的非零常数m,总存在非零常数T,恒有f(x+T)>m?f(x)成立,则称函数f(x)是D上的m级类增周期函数,周期为T.若恒有f(x+T)=m?f(x)成立,则称函数f(x)是D上的m级类周期函数,周期为T.(1)试判断函数是否为(3,+∞)上的周期为1的2级类增周期函数?并说明理由;(2)已知T=1,y=f(x)是[0,+∞)上m级类周期函数,且y=f(x)是[0,+∞)上的单调递增函数,当x∈[0,1)时,f(x)=2x,求实数m的取值范围.参考答案:(1)∵(x+1﹣1)﹣(x﹣1)2=﹣(x2﹣3x+1)<0,即)(x+1﹣1)<(x﹣1)2,∴>,即>2,即f(x+1)>2f(x)对一切x∈(3,+∞)恒成立,故函数f(x)=是(3,+∞)上的周期为1的2级类增周期函数.(2)∵x∈[0,1)时,f(x)=2x,∴当x∈[1,2)时,f(x)=mf(x﹣1)=m?2x﹣1,…当x∈[n,n+1)时,f(x)=mf(x﹣1)=m2f(x﹣2)=…=mnf(x﹣n)=mn?2x﹣n,即x∈[n,n+1)时,f(x)=mn?2x﹣n,n∈N*,∵f(x)在[0,+∞)上单调递增,∴m>0且mn?2n﹣n≥mn﹣1?2n﹣(n﹣1),即m≥2.19.(本小题满分16分)在平面直角坐标系,已知椭圆:过点,其左右焦点分别为,,离心率为.(1)求椭圆的方程;(2)若,分别是椭圆的左右顶点,动点满足,且交椭圆于点.①求证:为定值;②设与以为直径的圆的另一交点为,问直线是否过定点,并说明理由.参考答案:(1)易得且,解得
所以椭圆的方程为;
…………4分
(2)设,,
①易得直线的方程为:,
代入椭圆得,,
由得,,从而,
所以,………………10分
②直线过定点,理由如下:
依题意,,
由得,,
则的方程为:,即,
所以直线过定点.……………………16分
20.(12分)已知函数y=,设计一个输入x值后,输出y值的流程图.参考答案:略21.已知复数(是虚数单位).(1)若z是纯虚数,求m的值和;(2)设是z的共轭复数复数,复数在复平面上对应的点位于第三象限,求m的取值范围.参考答案:(1),;(2)【分析】将复数化成形式。(1)若是纯虚数,则,从而求出,进而求模。(2)复数在复平面上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年产xx桦木地板项目可行性研究报告(创业计划)
- 年产xx水沟盖板项目建议书
- 新建A9企业管理平台EMP系统项目立项申请报告
- 折叠桌项目可行性研究报告
- 地板漆项目可行性研究报告
- 中班数学公开课教案:有趣的桔子宝宝
- 2023-2024学年广东省深圳市福田区六年级上学期期末英语试卷
- 小班社会教案及教学反思《新教室新班级》
- 【同步配套】北京版五年级下册数学同步教案-4.4 分数的意义(四)
- 地方政府与城投企业债务风险研究报告-山西篇 2024 -联合资信
- 《变压器原理与应用》课件
- RCA根本原因分析法在护理不良事件中的应用课件
- 配电工程施工方案高低压配电工程施工组织设计
- 《矿用传感器》课件
- 足浴店年度工作计划
- 年产5000吨的菠萝罐头厂的设计
- 农业述职报告范文
- m3白血病护理查房课件
- 招投标审计方案
- 2024低压电工复审模拟考试题库整套
- 《灯》(教学设计)【中职专用】高一语文(高教版2023基础模块上册)
评论
0/150
提交评论