下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省滨州市东营市胜利第十五中学高二数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列各函数的导数:①;②(ax)′=a2lnx;③(sin2x)′=cos2x;④()′=.其中正确的有()A.0个 B.1个 C.2个 D.3个参考答案:B【考点】导数的运算.【分析】根据题意,依次对4个函数求导,比较即可得答案.【解答】解:根据题意,依次对4个函数求导:对于①、y==,其导数y′=,正确;对于②、y=ax,其导数y′=axlna,计算错误;对于③、y=sin2x,其导数y′=2cos2x,计算错误;对于④、y==(x+1)﹣1,其导数y′=﹣,计算错误;只有①的计算是正确的;故选:B.2.从1、2、3、4、5、6这6个数字中,不放回地任取两数,两数都是偶数的概率是()A.
B.
C.
D.参考答案:D3.4位同学报名参加数、理、化竞赛,每人限报一科,不同的报名方法种数为(
)A.64
B.81
C.24
D.12参考答案:A略4.在区间[﹣π,π]内随机取两个数分别记为a,b,则使得函数f(x)=x2+2ax﹣b2+π有零点的概率为()A. B. C. D.参考答案:B【考点】等可能事件的概率.【分析】先判断概率的类型,由题意知本题是一个几何概型,由a,b使得函数f(x)=x2+2ax﹣b2+π有零点,得到关于a、b的关系式,写出试验发生时包含的所有事件和满足条件的事件,做出对应的面积,求比值得到结果.【解答】解:由题意知本题是一个几何概型,∵a,b使得函数f(x)=x2+2ax﹣b2+π有零点,∴△≥0∴a2+b2≥π试验发生时包含的所有事件是Ω={(a,b)|﹣π≤a≤π,﹣π≤b≤π}∴S=(2π)2=4π2,而满足条件的事件是{(a,b)|a2+b2≥π},∴s=4π2﹣π2=3π2,由几何概型公式得到P=,故选B.【点评】高中必修中学习了几何概型和古典概型两种概率问题,先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.再看是不是几何概型,它的结果要通过长度、面积或体积之比来得到.5.设复数满足,则(
)A. B. C. D.参考答案:A6.圆O1:x2+y2﹣2x=0和圆O2:x2+y2﹣4y=0的公共弦长为()A. B. C.3 D.参考答案:B【考点】直线与圆相交的性质.【分析】由条件求得公共弦所在的直线方程、一个圆的圆心到公共弦的距离,再利用垂径定理求得公共弦的长.【解答】解:圆O1的圆心为(1,0),半径r1=1,圆O2的圆心为(0,2),半径r2=2,故两圆的圆心距,大于半径之差而小于半径之和,故两圆相交.圆和圆两式相减得到相交弦所在直线方程x﹣2y=0,圆心O1(1,0)到直线x﹣2y=0距离为,由垂径定理可得公共弦长为2=,故选:B.7.已知命题,,则
()A.,
B.,C.,
D.,参考答案:B8.设,,若,则的取值范围是A.
B.
C.
D.参考答案:A略9.“”是“”的(
)A.充要条件
B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件参考答案:B略10.函数f(x)=+x2﹣3x﹣4在[0,2]上的最小值是()A.﹣ B.﹣ C.﹣4 D.﹣参考答案:A【考点】利用导数求闭区间上函数的最值.【分析】对f(x)进行求导,利用导数研究函数的最值问题,注意要验证端点值与极值点进行比较;【解答】解:∵f(x)=+x2﹣3x﹣4在定义域[0,2]上,∴f′(x)=x2+2x﹣3=(x﹣1)(x+3),令f′(x)=0,解得x=1或﹣3;当0<x<1时,f′(x)<0,f(x)为减函数;当1<x<2时,f′(x)>0,f(x)为增函数;∴f(x)在x=1上取极小值,也是最小值,∴f(x)min=f(1)=+1﹣3﹣4=﹣;故选A;二、填空题:本大题共7小题,每小题4分,共28分11.在数列中,,且对任意大于1的正整数,点在直线上,则数列的前项和=_________。参考答案:略12.已知复数z1=m+2i,z2=3﹣4i,若为实数,则实数m的值为
.参考答案:考点:复数代数形式的混合运算;复数的基本概念.分析:复数z1=m+2i,z2=3﹣4i,代入后,把它的分子、分母同乘分母的共轭复数,化为a+bi(ab∈R)的形式,令虚部为0,可求m值.解答: 解:由z1=m+2i,z2=3﹣4i,则===+为实数,得4m+6=0,则实数m的值为﹣.故答案为:点评:本题考查复数的基本概念,复数代数形式的混合运算,是基础题.13.已知函数有零点,则a的取值范围是________参考答案:14.复数的值是________.参考答案:-115.已知椭圆和双曲线有相同的焦点F1、F2,点P为椭圆和双曲线的一个交点,则|PF1|·|PF2|的值是
参考答案:2516.一组数据的平均值是5,则此组数据的标准差是
.参考答案:17.复平面内,已知复数所对应的点都在单位圆内,则实数x的取值范围是__________.参考答案:试题分析:∵z对应的点z(x,-)都在单位圆内,∴|Oz|<1,即<1.∴x2+<1.∴x2<.∴-.考点:本题主要考查复数的几何意义,简单不等式解法。点评:可根据复数的几何意义,构造不等式,求未知数的范围.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知a>0,b>0.(1)求证:+≥;(2)若c>0,求证:在a﹣b﹣c,b﹣a﹣c,c﹣a﹣b中至少有两个负数.参考答案:【考点】R6:不等式的证明;R9:反证法与放缩法.【分析】(1)利用分析法证明;(2)假设a≤b≤c,利用不等式的性质判断三个数的正负即可.【解答】证明:(1)要证:≥,只需证:≥,只需证:(2a+b)2≥8ab,即证:4a2+b2﹣4ab≥0,即证:(2a﹣b)2≥0,显然上式恒成立,故≥.(2)假设0<a≤b≤c,显然a﹣b﹣c≤b﹣b﹣c=﹣c<0,b﹣a﹣c≤c﹣a﹣c=﹣a<0,∴在a﹣b﹣c,b﹣a﹣c,c﹣a﹣b中至少有两个负数.19.如图,四棱锥的底面为矩形,底面,.为线段的中点,在线段上,且.(1)证明:.(2)求直线与平面所成角的正弦值.参考答案:如图,以为原点,分别以的方向为轴正方向建立空间直角坐标系,则,.(1)所以,所以,即.(2)设平面的法向量为,,由,解得取,去平面的一个法向量为,设直线与平面所成角为,则由,得.20.对甲、乙的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下:问:甲、乙谁的平均成绩最好?谁的各门功课发展较平衡?甲6080709070乙8060708075参考答案:【考点】极差、方差与标准差.【分析】先求出甲和乙的平均数,再求出甲和乙的方差,结果甲的平均数大于乙的平均数,甲的方差大于乙的方差,得到结论.【解答】解:,,∵∴甲的平均成绩较好,乙的各门功课发展较平衡.21.如图,椭圆的离心率为,直线和所围成的矩形ABCD的面积为.(1)求椭圆M的标准方程;(2)设直线与椭圆M有两个不同的交点与矩形ABCD有两个不同的交点,求的最大值及取得最大值时m的值.参考答案:(1)……①…………1分矩形ABCD面积为8,即……②…………2分由①②解得:,
…………3分∴椭圆M的标准方程是.……4分(2),k*s5u
略22.已知f(x)=ln(x+1)﹣ax(a∈R)(1)当a=1时,求f(x)在定义域上的最大值;(2)已知y=f(x)在x∈[1,+∞)上恒有f(x)<0,求a的取值范围;(3)求证:.参考答案:解:(1)∵f(x)=ln(x+1)﹣ax(a∈R),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2022-2023年全国医师定期考核题库附答案
- 重庆人文科技学院《烘焙实务》2021-2022学年第一学期期末试卷
- 重庆人文科技学院《复变函数》2022-2023学年第一学期期末试卷
- 重庆人文科技学院《大众健身操》2022-2023学年第一学期期末试卷
- 安全质量管理员岗位职责
- 重庆三峡学院《高级笔译》2023-2024学年第一学期期末试卷
- 重庆三峡学院《电气新技术综述与研讨》2023-2024学年期末试卷
- Python程序员岗位职责职位要求
- 年产2000吨硅碳负极材料项目可行性研究报告写作模板-备案审批
- 重庆财经学院《数据库原理》2021-2022学年期末试卷
- 小学心理健康教育人教六年级下册目录生命只有一次教学设计
- 小学劳动课教案三年级上册5篇
- 2021版特种设备目录
- 五年级上册美术课件-第4课 未来的交通工具丨赣美版
- 最新爆破安全规程
- 主题班会课防盗
- 支委会委员选举计票单
- 近三年无重大违法违规情况的说明
- 幼儿园整合式主题活动设计案例《温馨家园》
- 荒漠区生态治理(麦草沙障、植物固沙)施工方案
- 大学生职业生涯规划大赛参赛作品ppt课件
评论
0/150
提交评论