山东省淄博市临淄实验中学2022-2023学年高二数学理模拟试卷含解析_第1页
山东省淄博市临淄实验中学2022-2023学年高二数学理模拟试卷含解析_第2页
山东省淄博市临淄实验中学2022-2023学年高二数学理模拟试卷含解析_第3页
山东省淄博市临淄实验中学2022-2023学年高二数学理模拟试卷含解析_第4页
山东省淄博市临淄实验中学2022-2023学年高二数学理模拟试卷含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省淄博市临淄实验中学2022-2023学年高二数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.数列中,若,则的值为

()A.-1 B. C.1 D.2参考答案:A略2.(1)某小区有800个家庭,其中高收入家庭200户,中等收入家庭480户,低收入家庭120户.为了了解有关家用轿车购买力的某项指标,要从中抽取一个容量为100户的样本;(2)从10名同学中抽取3个参加座谈会。抽取方法有:①简单随机抽样,②系统抽样,③分层抽样。问题和方法配对正确的是

A.(1)③;(2)①

B.(1)①;(2)②

C..(1)②;(2)③

D.(1)③;(2)②

参考答案:A3.已知随机变量服从正态分布,,且,则(

)A.0.4 B.0.5 C.0.6 D.0.1参考答案:C【分析】根据正态分布曲线的对称性可得,有,再由对立事件概率关系即可求解.【详解】,,.故选:C.【点睛】本题考查正态分布曲线的对称性、对立事件概率关系,属于基础题.4.复数的值是(

)A.

B.

C.

D.参考答案:D5.已知函数,为的导函数,则f

′(1)的值为(

)A. B. C.

D.参考答案:C6.设过抛物线的焦点的弦为AB,则|AB|的最小值为()A.

B.

C.2

D.无法确定参考答案:C7.各项为正数的等比数列的公比,且成等差数列,则的值是

)A.

B.

C.

D.或

参考答案:B8.下面程序输入时的运算结果是()AB1CD2参考答案:D略9.已知集合A={x|>1},则?RA=()A.{x|x>1} B.{x|x≥} C.{x|x≤1} D.{x|x<}参考答案:C【考点】补集及其运算.【分析】根据全集R及A,求出A的补集即可.【解答】解:集合A={x|>1}={x|x>1},?RA={x|x≤1},故选:C10.已知抛物线的焦点与双曲线的右焦点重合,抛物线的准线与轴的交点为,点在抛物线上且,则△的面积为(

)A.4

B.8 C.16 D.32参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.若长方体的一个顶点上的三条棱的长分别为,从长方体的一条对角线的一个端点出发,沿表面运动到另一个端点,其最短路程是______________。参考答案:

解析:

从长方体的一条对角线的一个端点出发,沿表面运动到另一个端点,有两种方案

12.直线(a-1)x+(3a+2)y-5=0(a为实数)一定经过定点_________。参考答案:(-3,1)13.经过两条直线和的交点,并且与直线平行的直线方程的一般式为▲参考答案:略14.已知n=5sinxdx,则二项式(2a﹣3b+c)n的展开式中a2bcn﹣3的系数为.参考答案:﹣4320【考点】二项式系数的性质;定积分.【分析】利用积分求出n的值,然后求解二项展开式对应项的系数.【解答】解:∵n=5sinxdx=﹣5cosx=﹣5(cosπ﹣cos0)=10;∴二项式(2a﹣3b+c)10的展开式中a2bc10﹣3的系数为:?22??(﹣3)?=﹣4320.故答案为:﹣4320.15.已知A(3,1),B(﹣4,0),P是椭圆上的一点,则PA+PB的最大值为.参考答案:10+

【考点】椭圆的简单性质.【分析】由题意画出图形,可知B为椭圆的左焦点,A在椭圆内部,设椭圆右焦点为F,借助于椭圆定义,把|PA|+|PB|的最大值转化为椭圆上的点到A的距离与F距离差的最大值求解.【解答】解:由椭圆方程,得a2=25,b2=9,则c2=16,∴B(﹣4,0)是椭圆的左焦点,A(3,1)在椭圆内部,如图:设椭圆右焦点为F,由题意定义可得:|PB|+|PF|=2a=10,则|PB|=10﹣|PF|,∴|PA|+|PB|=10+(|PA|﹣|PF|).连接AF并延长,交椭圆与P,则此时|PA|﹣|PF|有最大值为|AF|=∴|PA|+|PB|的最大值为10+.故答案为:10+16.如图所示,椭圆中心在坐标原点,F为左焦点,A,B分别为椭圆的右顶点和上顶点,当时,其离心率为,此类椭圆被称为“黄金椭圆”,类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e等于

.参考答案:“黄金椭圆”的性质是,可得“黄金双曲线”也满足这个性质.如图,设“黄金双曲线”的方程为,则,,∵,∴,∴,∴,解得或(舍去),∴黄金双曲线”的离心率e等于.

17.长方体ABCD﹣A1B1C1D1中,AB=3,AD=4,AA1=5,点P是面A1B1C1D1内一动点,则|PA|+|PC|的最小值为.参考答案:5【考点】棱柱的结构特征.【分析】设A关于平面A1B1C1D1的对称点为A′,则|PA|+|PC|的最小值为A″C,利用勾股定理即可求解.【解答】解:设A关于平面A1B1C1D1的对称点为A′,则|PA|+|PC|的最小值为A″C==5,故答案为5.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设函数f(x)=(1+x)2﹣2ln(1+x).(Ⅰ)求f(x)的单调区间;(Ⅱ)若当x∈[-1,e-1]时,不等式f(x)<m恒成立,求实数m的取值范围;(Ⅲ)若关于x的方程f(x)=x2+x+a在区间[0,2]上恰好有两个相异的实根,求实数a的取值范围.参考答案:【考点】利用导数研究函数的单调性;利用导数研究函数的极值.【分析】(Ⅰ)已知f(x)=(1+x)2﹣2ln(1+x)求出函数的导数f′(x),然后令f′(x)=0,解出函数的极值点,最后根据导数判断函数的单调性,从而求解;(Ⅱ)由题意当时,不等式f(x)<m恒成立,只要求出f(x)的最大值小于m就可以了,从而求出实数m的取值范围;(Ⅲ)已知方程f(x)=x2+x+a在区间[0,2]上恰好有两个相异的实根,整理移项得方程g(x)=x﹣a+1﹣2ln(1+x)=0在区间[0,2]上恰好有两个相异的实根,利用函数的增减性得根,于是有,从而求出实数a的取值范围.【解答】解:(Ⅰ)函数的定义域为(﹣1,+∞).∵,由f′(x)>0,得x>0;由f′(x)<0,得﹣1<x<0.∴f(x)的递增区间是(0,+∞),递减区间是(﹣1,0).(Ⅱ)∵由,得x=0,x=﹣2(舍去)由(Ⅰ)知f(x)在上递减,在[0,e﹣1]上递增.高三数学(理科)答案第3页(共6页)又,f(e﹣1)=e2﹣2,且.∴当时,f(x)的最大值为e2﹣2.故当m>e2﹣2时,不等式f(x)<m恒成立.(Ⅲ)方程f(x)=x2+x+a,x﹣a+1﹣2ln(1+x)=0.记g(x)=x﹣a+1﹣2ln(1+x),∵,由g′(x)>0,得x>1或x<﹣1(舍去).由g′(x)<0,得﹣1<x<1.∴g(x)在[0,1]上递减,在[1,2]上递增.为使方程f(x)=x2+x+a在区间[0,2]上恰好有两个相异的实根,只须g(x)=0在[0,1]和(1,2]上各有一个实数根,于是有∵2﹣2ln2<3﹣2ln3,∴实数a的取值范围是2﹣2ln2<a≤3﹣2ln3.19.(2009?浙江)设Sn为数列{an}的前n项和,Sn=kn2+n,n∈N*,其中k是常数.(Ⅰ)求a1及an;(Ⅱ)若对于任意的m∈N*,am,a2m,a4m成等比数列,求k的值.参考答案:解:(1)当n=1,a1=S1=k+1,n≥2,an=Sn﹣Sn﹣1=kn2+n﹣[k(n﹣1)2+(n﹣1)]=2kn﹣k+1(*).经检验,n=1(*)式成立,∴an=2kn﹣k+1.(2)∵am,a2m,a4m成等比数列,∴a2m2=ama4m,即(4km﹣k+1)2=(2km﹣k+1)(8km﹣k+1),整理得:mk(k﹣1)=0,对任意的m∈N*成立,∴k=0或k=1.考点:等比关系的确定;数列递推式.

专题:等差数列与等比数列;点列、递归数列与数学归纳法.分析:(1)先通过求a1=S1求得a1,进而根据当n>1时an=Sn﹣Sn﹣1求出an,再验证求a1也符合此时的an,进而得出an(2)根据am,a2m,a4m成等比数列,可知a2m2=ama4m,根据(1)数列{an}的通项公式,代入化简即可.解答:解:(1)当n=1,a1=S1=k+1,n≥2,an=Sn﹣Sn﹣1=kn2+n﹣[k(n﹣1)2+(n﹣1)]=2kn﹣k+1(*).经检验,n=1(*)式成立,∴an=2kn﹣k+1.(2)∵am,a2m,a4m成等比数列,∴a2m2=ama4m,即(4km﹣k+1)2=(2km﹣k+1)(8km﹣k+1),整理得:mk(k﹣1)=0,对任意的m∈N*成立,∴k=0或k=1.点评:本题主要考查数列等比关系的确定和求数列通项公式的问题.当分n=1和n>1两种情况求通项公式的时候,最后要验证当n=1时,通项公式是否成立20.(本小题满分12分)已知函数,在时取得极值.(I)求函数的解析式;(II)若时,恒成立,求实数m的取值范围;(III)若,是否存在实数b,使得方程在区间上恰有两个相异实数根,若存在,求出b的范围,若不存在说明理由.参考答案:解:(I)…….2分依题意得,所以,从而….4分(II)令,得或(舍去),当时,当由讨论知在的极小值为;最大值为或,因为,所以最大值为,所以

………8分(III)设,即,.又,令,得;令,得.所以函数的增区间,减区间.ks5u要使方程有两个相异实根,则有,解得……..12分略21.已知双曲线C的方程为:﹣=1(1)求双曲线C的离心率;(2)求与双曲线C有公共的渐近线,且经过点A(﹣3,2)的双曲线的方程.参考答案:【考点】双曲线的标准方程;双曲线的简单性质.【专题】综合题.【分析】(1)利用双曲线的方程的标准形式,求出a、b、c的值,即得离心率的值.(2)根据题意中所给的双曲线的渐近线方,则可设双曲线的标准方程为,(λ≠0);将点代入方程,可得λ=﹣1;即可得答案.【解答】解:(1)由题意知a2=9,b2=16,所以c2=a2+b2=25,则a=3,c=5,所以该双曲线的离心率e==.(2)根据题意,则可设双曲线的标准方程为﹣=λ,(λ≠0);又因为双曲线经过点A(﹣3,2)代入方程可得,λ=;故这条双曲线的方程为﹣=1.【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,解题的突破口由渐近线方程引入λ,进而设双曲线方程的方法,注意标明λ≠0.22.圆C满足:①圆心C在射线y=2x(x>0)上;

②与x轴相切;

③被直线y=x+2截得的线段长为(1)求圆C的方程;(2)过直线x+y+3=0上一点P作圆C的切线,设切点为E、F,求四边形PECF面积的最小值,并求此时的值.参考答案:【考点】直线与圆的位置关系.【专题】综合题;方程思想;向量法;直线与圆.【分析】(1)圆心C的坐标为(a,2a)(a>0),半径为r,利用条件建立方程组,即可求圆C的方程;(2)四边形PECF的面积取最小值时,|PC|最小,从而可求的值.【解答】解:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论