版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.若将抛物线y=x2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为()A. B. C. D.2.把方程化成的形式,则的值分别是()A.4,13 B.-4,19 C.-4,13 D.4,193.如图,在中,点P在边AB上,则在下列四个条件中::;;;,能满足与相似的条件是()A. B. C. D.4.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为x,可列方程为()A.300(1+x%)2=950 B.300(1+x2)=950 C.300(1+2x)=950 D.300(1+x)2=9505.从一张圆形纸板剪出一个小圆形和一个扇形,分别作为圆锥体的底面和侧面,下列的剪法恰好配成一个圆锥体的是()A. B. C. D.6.如图,在矩形中,,垂足为,设,且,则的长为()A.3 B. C. D.7.关于x的一元二次方程有实数根,则m的取值范围是()A. B.C.且 D.且8.一元二次方程x(x﹣1)=0的解是()A.x=0 B.x=1 C.x=0或x=﹣1 D.x=0或x=19.若a,b是方程x2+2x-2016=0的两根,则a2+3a+b=()A.2016 B.2015 C.2014 D.201210.下列图标中,是中心对称图形的是()A. B. C. D.11.如图,内接于圆,,,若,则弧的长为()A. B. C. D.12.二次函数的图象与轴有且只有一个交点,则的值为()A.1或-3 B.5或-3 C.-5或3 D.-1或3二、填空题(每题4分,共24分)13.如图,是⊙O的直径,弦,垂足为E,如果,那么线段OE的长为__________.14.如图,矩形中,,,以为圆心,为半径画弧,交延长线于点,以为圆心,为半径画弧,交于点,则图中阴影部分的面积是_________.15.如图,中,A,B两个顶点在轴的上方,点C的坐标是(−1,0).以点C为位似中心,在轴的下方作的位似图形,并把的边长放大到原来的2倍,记所得的像是.设点A的横坐标是,则点A对应的点的横坐标是_________.16.一元二次方程5x2﹣1=4x的一次项系数是______.17.抛物线的顶点坐标为______.18.函数y=—(x-1)2+2图像上有两点A(3,y1)、B(—4,y,),则y1______y2(填“<”、“>”或“=”).三、解答题(共78分)19.(8分)已知抛物线y=ax2+2x﹣(a≠0)与y轴交于点A,与x轴的一个交点为B.(1)①请直接写出点A的坐标;②当抛物线的对称轴为直线x=﹣4时,请直接写出a=;(2)若点B为(3,0),当m2+2m+3≤x≤m2+2m+5,且am<0时,抛物线最低点的纵坐标为﹣,求m的值;(3)已知点C(﹣5,﹣3)和点D(5,1),若抛物线与线段CD有两个不同的交点,求a的取值范围.20.(8分)国庆期间电影《我和我的祖国》上映,在全国范围内掀起了观影狂潮.小王一行5人相约观影,由于票源紧张,只好选择3人去A影院,余下2人去B影院,已知A影院的票价比B影院的每张便宜5元,5张影票的总价格为310元.(1)求A影院《我和我的祖国》的电影票为多少钱一张;(2)次日,A影院《我和我的祖国》的票价与前一日保持不变,观影人数为4000人.B影院为吸引客源将《我和我的祖国》票价调整为比A影院的票价低a%但不低于50元,结果B影院当天的观影人数比A影院的观影人数多了2a%,经统计,当日A、B两个影院《我和我的祖国》的票房总收入为505200元,求a的值.21.(8分)在等边三角形ABC中,点D,E分别在BC,AC上,且DC=AE,AD与BE交于点P,连接PC.(1)证明:ΔABE≌ΔCAD.(2)若CE=CP,求证∠CPD=∠PBD.(3)在(2)的条件下,证明:点D是BC的黄金分割点.22.(10分)如图,点E是矩形ABCD对角线AC上的一个动点(点E可以与点A和点C重合),连接BE.已知AB=3cm,BC=4cm.设A、E两点间的距离为xcm,BE的长度为ycm.某同学根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.下面是该同学的探究过程,请补充完整:(1)通过取点、画图、测量及分析,得到了x与y的几组值,如下表:说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出已补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当BE=2AE时,AE的长度约为cm.(结果保留一位小数)23.(10分)如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=30°.(1)求∠BAD的度数;(2)若AD=,求DB的长.24.(10分)如图,在平行四边形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,AE=CG,AH=CF,且EG平分∠HEF.(1)求证:△AEH≌△CGF.(2)若∠EFG=90°.求证:四边形EFGH是正方形.25.(12分)在如图所示的方格纸中,每个小方格都是边长为1个单位长度的正方形,△ABC的顶点及点O都在格点上(每个小方格的顶点叫做格点).(1)以点O为位似中心,在网格区域内画出△A′B′C′,使△A′B′C′与△ABC位似(A′、B′、C′分别为A、B、C的对应点),且位似比为2:1;(2)△A′B′C′的面积为个平方单位;(3)若网格中有一格点D′(异于点C′),且△A′B′D′的面积等于△A′B′C′的面积,请在图中标出所有符合条件的点D′.(如果这样的点D′不止一个,请用D1′、D2′、…、Dn′标出)26.如图,在ABC中,点D,E分别在边AC,AB上,且AE·AB=AD·AC,连接DE,BD.(1)求证:ADE~ABC.(2)若点E为AB为中点,AD:AE=6:5,ABC的面积为50,求BCD面积.
参考答案一、选择题(每题4分,共48分)1、B【解析】试题分析:∵函数y=x2的图象的顶点坐标为,将函数y=x2的图象向右平移2个单位,再向上平移3个单位,∴其顶点也向右平移2个单位,再向上平移3个单位.根据根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加.上下平移只改变点的纵坐标,下减上加.∴平移后,新图象的顶点坐标是.∴所得抛物线的表达式为.故选B.考点:二次函数图象与平移变换.2、D【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【详解】解:∵x2+8x-3=0,
∴x2+8x=3,
∴x2+8x+16=3+16,
∴(x+4)2=19,
∴m=4,n=19,
故选:D.【点睛】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.3、D【分析】根据相似三角形的判定定理,结合图中已知条件进行判断.【详解】当,,所以∽,故条件①能判定相似,符合题意;当,,所以∽,故条件②能判定相似,符合题意;当,即AC::AC,因为所以∽,故条件③能判定相似,符合题意;当,即PC::AB,而,所以条件④不能判断和相似,不符合题意;①②③能判定相似,故选D.【点睛】本题考查相似三角形的判定,熟练掌握判定定理是解题的关键.4、D【解析】设2016年到2018年该地区居民年人均收入平均增长率为x,那么根据题意得2018年年收入为:300(1+x)2,列出方程为:300(1+x)2=1.故选D.5、B【分析】根据圆锥的底面圆的周长等于扇形弧长,只要图形中两者相等即可配成一个圆锥体即可.【详解】选项A、C、D中,小圆的周长和扇形的弧长都不相等,故不能配成一个圆锥体,只有B符合条件.故选B.【点睛】本题考查了学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.6、C【分析】根据同角的余角相等求出∠ADE=∠ACD,再根据两直线平行,内错角相等可得∠BAC=∠ACD,然后求出AC.【详解】解:∵DE⊥AC,
∴∠ADE+∠CAD=90°,
∵∠ACD+∠CAD=90°,
∴∠ACD=∠ADE=α,
∵矩形ABCD的对边AB∥CD,
∴∠BAC=∠ACD,∵cosα=,,∴AC=.故选:C.【点睛】本题考查了矩形的性质,勾股定理,锐角三角函数的定义,同角的余角相等的性质,熟记各性质并求出BC是解题的关键.7、D【解析】试题分析:∵关于x的一元二次方程有实数根,∴且△≥0,即,解得,∴m的取值范围是且.故选D.考点:1.根的判别式;2.一元二次方程的定义.8、D【解析】试题分析:方程利用两数相乘积为0,两因式中至少有一个为0,因此可由方程x(x﹣1)=0,可得x=0或x﹣1=0,解得:x=0或x=1.故选D.考点:解一元二次方程-因式分解法9、C【分析】先根据一元二次方程的解的定义得到a2+2a-2016=0,即a2+2a=2016,则a2+3a+b化简为2016+a+b,再根据根与系数的关系得到a+b=-2,然后利用整体代入的方法计算即可.【详解】∵a是方程x2+2x-2016=0的实数根,
∴a2+2a-2016=0,
∴a2=-2a+2016,
∴a2+3a+b=-2a+2016+3a+b=a+b+2016,
∵a、b是方程x2+2x-2016=0的两个实数根,
∴a+b=-2,
∴a2+3a+b=-2+2016=1.
故选:C.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=-,x1•x2=.也考查了一元二次方程的解.10、C【解析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.11、A【分析】连接OB,OC.首先证明△OBC是等腰直角三角形,求出OB即可解决问题.【详解】连接OB,OC.∵∠A=180°-∠ABC-∠ACB=180°-65°-70°=45°,∴∠BOC=90°,∵BC=2,∴OB=OC=2,∴的长为=π,故选A.【点睛】本题考查圆周角定理,弧长公式,等腰直角三角形的性质的等知识,解题的关键是熟练掌握基本知识12、B【分析】由二次函数y=x2-(m-1)x+4的图象与x轴有且只有一个交点,可知△=0,继而求得答案.【详解】解:∵二次函数y=x2-(m-1)x+4的图象与x轴有且只有一个交点,∴△=b2-4ac=[-(m-1)]2-4×1×4=0,∴(m-1)2=16,解得:m-1=±4,∴m1=5,m2=-1.∴m的值为5或-1.故选:B.【点睛】此题考查了抛物线与x轴的交点问题,注意掌握二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.△=b2-4ac决定抛物线与x轴的交点个数.△>0时,抛物线与x轴有2个交点;△=0时,抛物线与x轴有1个交点;△<0时,抛物线与x轴没有交点.二、填空题(每题4分,共24分)13、6【分析】连接OD,根据垂径定理,得出半径OD的长和DE的长,然后根据勾股定理求出OE的长即可.【详解】∵是⊙O的直径,弦,垂足为E,∴OD=AB=10,DE=CD=8,在Rt中,由勾股定理可得:,故本题答案为:6.【点睛】本题考查了垂径定理和勾股定理的应用,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.14、【分析】阴影部分的面积为扇形BDM的面积加上扇形CDN的面积再减去直角三角形BCD的面积即可.【详解】解:∵,∴根据矩形的性质可得出,∵∴∴利用勾股定理可得出,因此,可得出故答案为:.【点睛】本题考查的知识点是求不规则图形的面积,熟记扇形的面积公式是解此题的关键.15、【分析】△A′B′C的边长是△ABC的边长的2倍,过A点和A′点作x轴的垂线,垂足分别是D和E,因为点A的横坐标是a,则DC=-1-a.可求EC=-2-2a,则OE=CE-CO=-2-2a-1=-3-2a【详解】解:如图,过A点和A′点作x轴的垂线,垂足分别是D和E,∵点A的横坐标是a,点C的坐标是(-1,0).
∴DC=-1-a,OC=1
又∵△A′B′C的边长是△ABC的边长的2倍,CE=2CD=-2-2a,OE=CE-OC=2-2a-1=-3-2a故答案为:-3-2a【点睛】本题主要考查了相似的性质,相似于点的坐标相联系,把点的坐标的问题转化为线段的长的问题.16、-4【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0).在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【详解】解:∵5x2﹣1=4x,方程整理得:5x2﹣4x﹣1=0,则一次项系数是﹣4,故答案为:﹣4【点睛】本题考查了一元二次方程的一般形式,解答本题要通过移项,转化为一般形式,注意移项时符号的变化.17、【分析】直接利用公式法求解即可,横坐标为:,纵坐标为:.【详解】解:由题目得出:抛物线顶点的横坐标为:;抛物线顶点的纵坐标为:抛物线顶点的坐标为:(-4,-10).故答案为:(-4,-10).【点睛】本题考查二次函数的知识,掌握二次函数的图象和性质是解题的关键.18、>【分析】由题意可知二次函数的解析式,且已知A、B两点的横坐标,将两点横坐标分别代入二次函数解析式求出y1、y1的值,再比较大小即可.【详解】解:把A(3,y1)、B(-4,y1)代入二次函数y=—(x-1)1+1得,y1=-(3-1)1+1=-1;y1=-(-4-1)1+1=-13,所以y1>y1.故答案为>.【点睛】本题考查二次函数图象上点的坐标相关特征,熟练掌握二次函数图象上点的坐标符合函数解析式是解题关键.三、解答题(共78分)19、(1)①;②;(2);(1)a>或a<﹣1.【分析】(1)①令x=0,由抛物线的解析式求出y的值,便可得A点坐标;②根据抛物线的对称轴公式列出a的方程,便可求出a的值;(2)把B点坐标代入抛物线的解析式,便可求得a的值,再结合已知条件am<0,得m的取值范围,再根据二次函数的性质结合条件当m2+2m+1≤x≤m2+2m+5时,抛物线最低点的纵坐标为,列出m的方程,求得m的值,进而得出m的准确值;(1)用待定系数法求出CD的解析式,再求出抛物线的对称轴,进而分两种情况:当a>0时,抛物线的顶点在y轴左边,要使抛物线与线段CD有两个不同的交点,则C、D两必须在抛物线上方,顶点在CD下方,根据这一条件列出a不等式组,进行解答;当a<0时,抛物线的顶点在y轴的右边,要使抛物线与线段CD有两个不同的交点,则C、D两必须在抛物线下方,抛物线的顶点必须在CD上方,据此列出a的不等式组进行解答.【详解】(1)①令x=0,得,∴,故答案为:;②∵抛物线的对称轴为直线x=﹣4,∴,∴a=,故答案为:;(2)∵点B为(1,0),∴9a+6﹣=0,∴a=﹣,∴抛物线的解析式为:,∴对称轴为x=﹣2,∵am<0,∴m>0,∴m2+2m+1>1>﹣2,∵当m2+2m+1≤x≤m2+2m+5时,y随x的增大而减小,∵当m2+2m+1≤x≤m2+2m+5,且am<0时,抛物线最低点的纵坐标为﹣,∴,整理得(m2+2m+5)2﹣4(m2+2m+5)﹣12=0,解得,m2+2m+5=6,或m2+2m+5=﹣2(△<0,无解),∴,∵m>0,∴;(1)设直线CD的解析式为y=kx+b(k≠0),∵点C(﹣5,﹣1)和点D(5,1),∴,∴,∴CD的解析式为,∵y=ax2+2x﹣(a≠0)∴对称轴为,①当a>0时,,则抛物线的顶点在y轴左侧,∵抛物线与线段CD有两个不同的交点,∴,∴;②当a<0时,,则抛物线的顶点在y轴左侧,∵抛物线与线段CD有两个不同的交点,∴,∴a<﹣1,综上,或a<﹣1.【点睛】本题为二次函数综合题,难度较大,解题时需注意用待定系数法求出CD的解析式,再求出抛物线的对称轴,要分两种情况进行讨论.20、(1)A影院《我和我的祖国》的电影票为60元一张;(2)a的值为1.【分析】(1)设A影院《我和我的祖国》的电影票为x元一张,由5张影票的总价格为310得关于x的一元一次方程,求解即可;(2)当日A、B两个影院《我和我的祖国》的票房总收入为505200元,得关于a的方程,再设a%=t,得到关于t的一元二次方程,解得t,然后根据题意对t的值作出取舍,最后得a的值.【详解】解:(1)设A影院《我和我的祖国》的电影票为x元一张,由题意得:3x+2(x+5)=310∴3x+2x=300∴x=60答:A影院《我和我的祖国》的电影票为60元一张;(2)由题意得:60×4000+60(1﹣a%)×4000(1+2a%)=505200化简得:2400(1﹣a%)(1+2a%)=2652设a%=t,则方程可化为:2t2﹣t+0.105=0解得:t1=1%,t2=35%∵当t1=1%时,60×(1﹣1%)=51>50;当t2=35%时,60×(1﹣35%)=39<50,故t1=1%符合题意,t2=35%不符合题意;∴当t1=1%时,a=1.答:a的值为1.【点睛】本题考查了一元一次方程和一元二次方程在实际问题中的应用,明确题意正确列式并对一元二次方程采用换元法求解,是解题的关键.21、(1)见解析;(2)见解析;(3)见解析【分析】(1)因为△ABC是等边三角形,所以AB=AC,∠BAE=∠ACD=60°,又AE=CD,即可证明ΔABE≌ΔCAD;(2)设则由等边对等角可得可得以及,故;(3)可证可得,故由于可得,根据黄金分割点可证点是的黄金分割点;【详解】证明:(1)∵△ABC是等边三角形,∴AB=AC,∠BAE=∠ACD=60°,在ΔABE与ΔCDA中,AB=AC,∠BAE=∠ACD=60°,AE=CD,∴△AEB≌△CDA;(2)由(1)知,则,设,则,∵,∴,∴,又,∴;(3)在和中,,,∴,∴,∴,又,∴,∴点是的黄金分割点;【点睛】本题主要考查了等边三角形的性质,全等三角形的判定与性质,掌握等边三角形的性质,全等三角形的判定与性质是解题的关键.22、解:(1)2.5;(2)图象见解析;(3)1.2(1.1—1.3均可)【分析】(1)根据画图测量即可;(2)按照(1)中数据描点画图即可;(3)当BE=2AE时,即y=2x时,画出图形观察图像即可得到值.【详解】解:(1)根据测量可得:2.5;(2)根据数据描点画图,即可画图象(3)当BE=2AE时,即y=2x时,如图,y=2x与原函数图像的交点M的横坐标即为所求,可得AE≈1.2(1.1—1.3均可).【点睛】本题为动点问题的函数图象探究题,解答时用到了数形结合和转化的数学思想.23、(1)60°;(2)3【分析】(1)根据圆周角定理得到∠ADB=90°,∠B=∠ACD=30°,然后利用互余可计算出∠BAD的度数;(2)利用含30度的直角三角形三边的关系求解.【详解】解:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵∠B=∠ACD=30°,∴∠BAD=90°﹣∠B=90°﹣30°=60°;(2)在Rt△ADB中,.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.24、(1)证明见解析;(2)证明见解析.【分析】(1)根据全等三
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商铺转租合同协议书
- 2024年度工程技术转让居间合同3篇
- 适用于2024年度项目的铲车及翻斗车租赁合同
- 基于二零二四年度计划的环保技术研发合同
- 医疗聘用合同范本
- 草原课件幻灯片
- 年解除实习协议证明书
- 会议服务培训课件
- 简单解除劳动合同协议书模板5篇
- 2024年度农产品采购综合服务合同2篇
- 全国消防宣传月《全民消防、生命至上》专题讲座
- GB/T 44773-2024高压直流换流站直流功率远方自动控制(ADC)技术规范
- 2023年12月英语四级真题及答案-第2套
- GB/T 21283.6-2015密封元件为热塑性材料的旋转轴唇形密封圈第6部分:热塑性材料与弹性体包覆材料的性能要求
- 宋太祖赵匡胤PPT
- 中职学校《金属加工与实训》全套电子教案(含教学进度计划)(配套教材:高教版中职统编)云天课件
- 五小成果评价标准
- 春和里学校骨干教师献课活动实施方案
- 九仙温泉度假村项目环境影响报告书
- 标准人体关节活动度测评量表
- 工资单模板(样本)之欧阳语创编
评论
0/150
提交评论