版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.校园内有一个由两个全等的六边形(边长为)围成的花坛,现将这个花坛在原有的基础上扩建成如图所示的一个菱形区域,并在新扩建的部分种上草坪,则扩建后菱形区域的周长为()A. B. C. D.2.在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A. B. C. D.3.下列事件中,必然发生的是()A.某射击运动射击一次,命中靶心 B.通常情况下,水加热到100℃时沸腾C.掷一次骰子,向上的一面是6点 D.抛一枚硬币,落地后正面朝上4.已知(﹣1,y1),(2,y2),(3,y3)在二次函数y=﹣x2+4x+c的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y1<y3<y25.已知2x=3y(y≠0),则下面结论成立的是()A. B.C. D.6.小苏和小林在如图所示①的跑道上进行米折返跑.在整个过程中,跑步者距起跑线的距离单位:与跑步时间单位:的对应关系如图所示②.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点;B.小苏跑全程的平均速度大于小林跑全程的平均速度;C.小苏前15s跑过的路程大于小林前15s跑过的路程;D.小林在跑最后100m的过程中,与小苏相遇2次;7.已知2是关于x的方程的一个根,则这个方程的另一个根是()A.3 B.-3 C.-5 D.68.把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则∠APG=()A.141° B.144° C.147° D.150°9.如图,已知抛物线y=x2+px+q的对称轴为直线x=﹣2,过其顶点M的一条直线y=kx+b与该抛物线的另一个交点为N(﹣1,﹣1).若要在y轴上找一点P,使得PM+PN最小,则点P的坐标为().A.(0,﹣2) B.(0,﹣) C.(0,﹣) D.(0,﹣)10.如图,点A、B、C在上,∠A=72°,则∠OBC的度数是()A.12° B.15° C.18° D.20°二、填空题(每小题3分,共24分)11.将一副三角板按图所示的方式叠放在一起,使直角的顶点重合于点,并能使点自由旋转,设,,则与之间的数量关系是__________.12.若,则锐角α的度数是_____.13.用配方法解方程时,可配方为,其中________.14.方程的两根为,,则=.15.如图,点是矩形中边上一点,将沿折叠为,点落在边上,若,,则________.16.写出一个你认为的必然事件_________.17.如图所示,在中,,将绕点旋转,当点与点重合时,点落在点处,如果,,那么的中点和的中点的距离是______.18.如图,,直线a、b与、、分别相交于点A、B、C和点D、E、F.若AB=3,BC=5,DE=4,则EF的长为______.三、解答题(共66分)19.(10分)如图所示,在等腰△ABC中,AB=AC=10cm,BC=16cm.点D由点A出发沿AB方向向点B匀速运动,同时点E由点B出发沿BC方向向点C匀速运动,它们的速度均为1cm/s.连接DE,设运动时间为t(s)(0<t<10),解答下列问题:(1)当t为何值时,△BDE的面积为7.5cm2;(2)在点D,E的运动中,是否存在时间t,使得△BDE与△ABC相似?若存在,请求出对应的时间t;若不存在,请说明理由.20.(6分)如图,反比例函数的图象的一支在平面直角坐标系中的位置如图所示,根据图象回答下列问题:(1)图象的另一支在第________象限;在每个象限内,随的增大而________,常数的取值范围是________;(2)若此反比例函数的图象经过点,求的值.21.(6分)如图1,抛物线y=﹣x2+bx+c交x轴于点A(-4,0)和点B,交y轴于点C(0,4).(1)求抛物线的函数表达式;(2)如图2,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,当△ADC面积有最大值时,在抛物线对称轴上找一点M,使DM+AM的值最小,求出此时M的坐标;(3)点Q在直线AC上的运动过程中,是否存在点Q,使△BQC为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.22.(8分)如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC、BD交于点O,BD平分∠ABC,过点D作DE⊥BC,交BC的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若DC=2,AC=4,求OE的长.23.(8分)小强在教学楼的点P处观察对面的办公大楼.为了测量点P到对面办公大楼上部AD的距离,小强测得办公大楼顶部点A的仰角为45°,测得办公大楼底部点B的俯角为60°,已知办公大楼高46米,CD=10米.求点P到AD的距离(用含根号的式子表示).24.(8分)如图,在平面直角坐标系中,的三个顶点坐标分别为.(1)画出,使与关于点成中心对称,并写出点的对应点的坐标_____________;(2)以原点为位似中心,位似比为1:2,在轴的左侧,画出将放大后的,并写出点的对应点的坐标___________________;(3)___________________.25.(10分)在2017年“KFC”篮球赛进校园活动中,某校甲、乙两队进行决赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且乙队已经赢得了第1局比赛,那么甲队获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)26.(10分)某商场销售一批衬衫,每件成本为50元,如果按每件60元出售,可销售800件;如果每件提价5元出售,其销售量就减少100件,如果商场销售这批衬衫要获利润12000元,又使顾客获得更多的优惠,那么这种衬衫售价应定为多少元?(1)设提价了元,则这种衬衫的售价为___________元,销售量为____________件.(2)列方程完成本题的解答.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据题意和正六边形的性质得出△BMG是等边三角形,再根据正六边形的边长得出BG=GM=3.5m,同理可证出AF=EF=3.5m,再根据AB=BG+GF+AF,求出AB,从而得出扩建后菱形区域的周长.【详解】解:如图,∵花坛是由两个相同的正六边形围成,∴∠FGM=∠GMN=120°,GM=GF=EF,∴∠BMG=∠BGM=60°,∴△BMG是等边三角形,∴BG=GM=3.5(m),同理可证:AF=EF=3.5(m)∴AB=BG+GF+AF=3.5×3=10.5(m),∴扩建后菱形区域的周长为10.5×4=42(m),故选:C.【点睛】此题考查了菱形的性质,用到的知识点是等边三角形的判定与性质、菱形的性质和正六边形的性质,关键是根据题意作出辅助线,找出等边三角形.2、C【解析】试题分析:选项A:一次函数图像经过一、二、三象限,因此a>0,b>0,对于二次函数y=ax2﹣bx图像应该开口向上,对称轴在y轴右侧,不合题意,此选项错误;选项B:一次函数图像经过一、二、四象限,因此a<0,b>0,对于二次函数y=ax2﹣bx图像应该开口向下,对称轴在y轴左侧,不合题意,此选项错误;选项C:一次函数图像经过一、二、三象限,因此a>0,b>0,对于二次函数y=ax2﹣bx图像应该开口向上,对称轴在y轴右侧,符合题意,此选项正确;选项D:一次函数图像经过一、二、三象限,因此a>0,b>0,对于二次函数y=ax2﹣bx图像应该开口向上,对称轴在y轴右侧,不合题意,此选项错误.故选C.考点:1一次函数图像;2二次函数图像.3、B【解析】A、某射击运动射击一次,命中靶心,随机事件;B、通常加热到100℃时,水沸腾,是必然事件.C、掷一次骰子,向上的一面是6点,随机事件;D抛一枚硬币,落地后正面朝上,随机事件;故选B.4、D【分析】首先根据二次函数解析式确定抛物线的对称轴为x=1,再根据抛物线的增减性以及对称性可得y1,y1,y3的大小关系.【详解】∵二次函数y=-x1+4x+c=-(x-1)1+c+4,∴对称轴为x=1,∵a<0,∴x<1时,y随x增大而增大,当x>1时,y随x的增大而减小,∵(-1,y1),(1,y1),(3,y3)在二次函数y=-x1+4x+c的图象上,且-1<1<3,|-1-1|>|1-3|,∴y1<y3<y1.故选D.【点睛】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,关键是掌握二次函数图象上点的坐标满足其解析式.5、A【解析】试题解析:A、两边都除以2y,得,故A符合题意;B、两边除以不同的整式,故B不符合题意;C、两边都除以2y,得,故C不符合题意;D、两边除以不同的整式,故D不符合题意;故选A.6、D【分析】依据函数图象中跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系,即可得到正确结论.【详解】解:由函数图象可知:两人从起跑线同时出发,先后到达终点,小林先到达终点,故A错误;根据图象两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,而路程相同,所以小苏跑全程的平均速度小于小林跑全程的平均速度,故B错误;小苏前15s跑过的路程小于小林前15s跑过的路程,故C错误;小林在跑最后100m的过程中,两人相遇时,即实线与虚线相交的地方,由图象可知2次,故D正确;
故选:D.【点睛】本题主要考查了函数图象的读图能力,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.7、A【解析】由根与系数的关系,即2加另一个根等于5,计算即可求解.【详解】由根与系数的关系,设另一个根为x,则2+x=5,即x=1.故选:A.【点睛】本题考查了根与系数的关系,用到的知识点:如果x1,x2是方程x2+px+q=0的两根,那么x1+x2=-p.8、B【解析】先根据多边形的内角和公式分别求得正六边形和正五边形的每一个内角的度数,再根据多边形的内角和公式求得∠APG的度数.【详解】(6﹣2)×180°÷6=120°,(5﹣2)×180°÷5=108°,∠APG=(6﹣2)×180°﹣120°×3﹣108°×2=720°﹣360°﹣216°=144°,故选B.【点睛】本题考查了多边形内角与外角,关键是熟悉多边形内角和定理:(n﹣2)•180(n≥3)且n为整数).9、B【解析】根据线段垂直平分线的性质,可得N,′根据待定系数法,可得函数解析式,根据配方法,可得M点坐标,根据两点之间线段最短,可得MN′,根据自变量与函数值的对应关系,可得P点坐标.【详解】如图,作N点关于y轴的对称点N′,连接MN′交y轴于P点,将N点坐标代入抛物线,并联立对称轴,得,解得,y=x2+4x+2=(x+2)2-2,M(-2,-2),N点关于y轴的对称点N′(1,-1),设MN′的解析式为y=kx+b,将M、N′代入函数解析式,得,解得,MN′的解析式为y=x-,当x=0时,y=-,即P(0,-),故选:B.【点睛】本题考查了二次函数的性质,利用了线段垂直平分线的性质,两点之间线段最短得出P点的坐标是解题关键.10、C【分析】根据圆周角定理可得∠BOC的度数,根据等腰三角形的性质即可得答案.【详解】∵点A、B、C在上,∠A=72°,∴∠BOC=2∠A=144°,∵OB=OC,∴∠OBC=∠OCB=(180°-∠BOC)=18°,故选:C.【点睛】本题考查圆周角定理及等腰三角形的性质,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;熟练掌握圆周角定理是解题关键.二、填空题(每小题3分,共24分)11、【分析】分重叠和不重叠两种情况讨论,由旋转的性质,即可求解.【详解】如图,由题意得:,,,.如图,由题意得:,,,,.综上所述,,故答案为:.【点睛】本题考查了旋转的性质,灵活运用旋转的性质是本题的关键.12、45°.【分析】直接利用特殊角的三角函数值得出答案.【详解】解:∵,∴α=45°.故答案为:45°.【点睛】本题考查的知识点特殊角的三角函数值,理解并熟记特殊角的三角函数值是解题的关键.13、-6【分析】把方程左边配成完全平方,与比较即可.【详解】,,,可配方为,.故答案为:.【点睛】本题考查用配方法来解一元二次方程,熟练配方是解决此题的关键.14、.【解析】试题分析:∵方程的两根为,,∴,,∴===.故答案为.考点:根与系数的关系.15、5【分析】由矩形的性质可得AB=CD=8,AD=BC=10,∠A=∠D=90°,由折叠的性质可求BF=BC=10,EF=CE,由勾股定理可求AF的长,CE的长.【详解】解:∵四边形ABCD是矩形∴AB=CD=8,AD=BC=10,∠A=∠D=90°,∵将△BCE沿BE折叠为△BFE,在Rt△ABF中,AF==6∴DF=AD-AF=4在Rt△DEF中,DF2+DE2=EF2=CE2,∴16+(8-CE)2=CE2,∴CE=5故答案为:5【点睛】本题考查了矩形的性质,折叠的性质,勾股定理,灵活运用这些性质进行推理是本题的关键.16、瓮中捉鳖(答案不唯一)【分析】此题根据事件的可能性举例即可.【详解】必然事件就是一定会发生的,例如:瓮中捉鳖等,故答案:瓮中捉鳖(答案不唯一).【点睛】此题考查事件的可能性:必然事件的概念.17、4【分析】设,在中,,得.由勾股定理,再求AM,AB,证,.得,,可得.【详解】如图所示,,是的中点,,,.设,在中,,.,.,.,,,可得,同理可证.,,.故答案为:4【点睛】考核知识点:解直角三角形.构造直角三角形,利用三角形相关知识分析问题是关键.18、【分析】直接根据平行线分线段成比例定理即可得.【详解】,,,,解得,故答案为:.【点睛】本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键.三、解答题(共66分)19、(1)t为3秒时,△BDE的面积为7.3cm3;(3)存在时间t为或秒时,使得△BDE与△ABC相似.【分析】(1)根据等腰三角形的性质和相似三角形的判定和性质求三角形BDE边BE的高即可求解;(3)根据等腰三角形和相似三角形的判定和性质分两种情况说明即可.【详解】解:(1)分别过点D、A作DF⊥BC、AG⊥BC,垂足为F、G如图∴DF∥AG,=∵AB=AC=10,BC=11∴BG=8,∴AG=1.∵AD=BE=t,∴BD=10﹣t,∴=解得DF=(10﹣t)∵S△BDE=BE•DF=7.3∴(10﹣t)•t=13解得t=3.答:t为3秒时,△BDE的面积为7.3cm3.(3)存在.理由如下:①当BE=DE时,△BDE与△BCA,∴=即=,解得t=,②当BD=DE时,△BDE与△BAC,=即=,解得t=.答:存在时间t为或秒时,使得△BDE与△ABC相似.【点睛】此题考查了相似三角形的判定和性质、等腰三角形的性质,解决本题的关键是动点变化过程中形成不同的等腰三角形.20、(1)故答案为四;增大;;(2).【分析】(1)根据反比例函数的图象特点即可得;(2)将点代入反比例函数的解析式即可得.【详解】(1)由反比例函数的图象特点得:图象的另一支在第四象限;在每个象限内,y随x的增大而增大由反比例函数的性质可得:,解得故答案为:四;增大;;(2)把代入得到:,则故m的值为.【点睛】本题考查了反比例函数的图象特点、反比例函数的性质,熟记函数的图象特点和性质是解题关键.21、(1);(2)点M的坐标为M(,5);(3)存在,Q(,)或(,)或(-3,1)或().【分析】(1)将A(-4,0)、C(0,4)代入y=﹣x2+bx+c中即可得;(2)直线AC的解析式为:,表达出DQ的长度,及△ADC的面积,根据二次函数的性质得出△ADC面积的最大值,从而得出D点坐标,作点D关于对称轴对称的点,确定点M,使DM+AM的值最小;(3)△BQC为等腰三角形,则表达出三边,并对三边进行分类讨论,计算得出Q点的坐标即可.【详解】解:(1)将A(-4,0)、C(0,4)代入y=﹣x2+bx+c中得,解得,∴,(2)直线AC的解析式为:设Q(m,m+4),则D(m,)DQ=()-(m+4)=当m=-2时,面积有最大值此时点D的坐标为D(-2,6),D点关于对称轴对称的点D1(-1,6)直线AD1的解析式为:当时,所以,点M的坐标为M(,5)(3)∵,∴设Q(t,t+4),由得,,∴B(1,0),∴,△BQC为等腰三角形①当BC=QC时,则,∴此时,∴Q(,)或(,);②当BQ=QC时,则,解得,∴Q();③当BQ=BC时,则,解得t=-3,∴Q(-3,1);综上所述,若△BQC为等腰三角形,则Q(,)或(,)或(-3,1)或().【点睛】本题考查二次函数与最短路径,面积最大值,动点存在性等几何的综合应用,难度较大,解题的关键是能够灵活运用二次函数的性质及几何知识.22、(1)证明见解析;(2)1.【分析】(1)由AD∥BC,BD平分∠ABC,可得AD=AB,结合AD∥BC,可得四边形ABCD是平行四边形,进而,可证明四边形ABCD是菱形,(2)由四边形ABCD是菱形,可得OC=AC=2,在Rt△OCD中,由勾股定理得:OD=1,根据“在直角三角形中,斜边上的中线等于斜边的一半”,即可求解.【详解】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵AB=BC,∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,又∵AB=BC,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴AC⊥BD,OB=OD,OA=OC=AC=2,在Rt△OCD中,由勾股定理得:OD==1,∴BD=2OD=8,∵DE⊥BC,∴∠DEB=90°,∵OB=OD,∴OE=BD=1.【点睛】本题主要考查菱形的判定定理及性质定理,题目中的“双平等腰”模型是证明四边形是菱形的关键,掌握直角三角形的性质和勾股定理,是求OE长的关键.23、.【分析】连接PA、PB,过点P作PM⊥AD于点M;延长BC,交PM于点N,将实际问题中的已知量转化为直角三角形中的有关量,设PM=x米,在Rt△PMA中,表示出AM,在Rt△PNB中,表示出BN,由AM+BN=46米列出方程求解即可.【详解】解:连结PA、PB,过点P作PM⊥AD于点M;延长BC,交PM于点N则∠APM=45°,∠BPM=60°,NM=10米设PM=x在Rt△PMA中,AM=PM×tan∠APM=xtan45°=x(米)在Rt△PNB中,BN=PN×tan∠BPM=(-10)tan60°=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 装修 免租 合同范例
- 终生恩师合同模板
- 退休代理协议合同模板
- 2024土地抵押借款合同:新能源汽车充电桩项目融资协议2篇
- 承包学校食堂合同范例
- 高压胶管采购合同范例
- 丝绸合同范例
- 2024版二房东租赁合同附带租赁期限调整条款2篇
- 黑色地砖采购合同范例
- 2024年度马铃薯种植技术培训与销售支持合同3篇
- 天津市红桥区2023-2024学年九年级上学期期中道德与法治试卷
- 高职劳动教育学习通超星期末考试答案章节答案2024年
- 2023年注册城乡规划师考试:城乡规划相关知识历年真题汇编(共388题)
- 九型人格之职场心理学习通超星期末考试答案章节答案2024年
- 医疗器械监督管理条例知识竞赛考试题及答案
- (工作计划)非物质文化遗产保护方案
- 大学生国家安全教育学习通超星期末考试答案章节答案2024年
- 人力资源岗位招聘笔试题及解答(某大型央企)
- 公园广场保洁管理服务投标方案(技术方案)
- 2024届上海高考语文课内古诗文背诵默写篇目(精校版)
- 幂函数 说课课件-2024-2025学年高一上学期数学人教A版(2019)必修第一册
评论
0/150
提交评论