版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列一元二次方程中,有两个不相等的实数根的是()A. B. C. D.2.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB3.如图,在Rt△ABC内有边长分别为a,b,c的三个正方形.则a、b、c满足的关系式是()A.b=a+c B.b=ac C.b2=a2+c2 D.b=2a=2c4.二次函数的图象如图所示,其对称轴为,有下列结论:①;②;③;④对任意的实数,都有,其中正确的是()A.①② B.①④ C.②③ D.②④5.方程的根是()A.5和 B.2和 C.8和 D.3和6.已知二次函数y=ax2+bx+c(a≠0),函数y与自变量x的部分对应值如下表所示:x…﹣10123…y…﹣23676…当y<6时,x的取值范围是()A.x<1 B.x≤3 C.x<1或x>0 D.x<1或x>37.如图,△ABC中,D是AB的中点,DE∥BC,连结BE,若S△DEB=1,则S△BCE的值为()A.1 B.2 C.3 D.48.如图所示的物体组合,它的左视图是()A. B. C. D.9.如图,Rt△ABC中,∠A=90°,AD⊥BC于点D,若BD:CD=3:2,则tanB=()A.23 B.32 C.610.下列方程中,关于x的一元二次方程是()A.x2﹣x(x+3)=0 B.ax2+bx+c=0C.x2﹣2x﹣3=0 D.x2﹣2y﹣1=0二、填空题(每小题3分,共24分)11.如果,那么__________.12.已知正六边形的边长为4cm,分别以它的三个不相邻的顶点为圆心,边长为半径画弧(如图),则所得到的三条弧的长度之和为cm.(结果保留π)13.已知抛物线y=ax2+bx+c开口向上,一条平行于x轴的直线截此抛物线于M、N两点,那么线段MN的长度随直线向上平移而变_____.(填“大”或“小”)14.如图抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF的最小值为_____.15.如图,抛物线与轴的负半轴交于点,与轴交于点,连接,点分别是直线与抛物线上的点,若点围成的四边形是平行四边形,则点的坐标为__________.16.如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,分别过点A,B向x轴作垂线,垂足分别为D,C,若矩形ABCD的面积是9,则k的值为_____.17.为了解早高峰期间A,B两邻近地铁站乘客的乘车等待时间(指乘客从进站到乘上车的时间),某部门在同一上班高峰时段对A、B两地铁站各随机抽取了500名乘客,收集了其乘车等待时间(单位:分钟)的数据,统计如表:等待时的频数间乘车等待时间地铁站5≤t≤1010<t≤1515<t≤2020<t≤2525<t≤30合计A5050152148100500B452151674330500据此估计,早高峰期间,在A地铁站“乘车等待时间不超过15分钟”的概率为_____;夏老师家正好位于A,B两地铁站之间,她希望每天上班的乘车等待时间不超过20分钟,则她应尽量选择从_____地铁站上车.(填“A”或“B”)18.如图,点A、B、C是⊙O上的点,且∠ACB=40°,阴影部分的面积为2π,则此扇形的半径为______.三、解答题(共66分)19.(10分)某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级(2)班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:八年级(2)班参加球类活动人数情况统计表项目篮球足球乒乓球排球羽毛球人数a6576八年级(2)班学生参加球类活动人数情况扇形统计图根据图中提供的信息,解答下列问题:(1)a=,b=.(2)该校八年级学生共有600人,则该年级参加足球活动的人数约人;(3)该班参加乒乓球活动的5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.20.(6分)解不等式组,并求出不等式组的整数解之和.21.(6分)如图,△ABC中,AB=AC=2,∠BAC=120°,D为BC边上的点,将DA绕D点逆时针旋转120°得到DE.(1)如图1,若AD=DC,则BE的长为,BE2+CD2与AD2的数量关系为;(2)如图2,点D为BC边山任意一点,线段BE、CD、AD是否依然满足(1)中的关系,试证明;(3)M为线段BC上的点,BM=1,经过B、E、D三点的圆最小时,记D点为D1,当D点从D1处运动到M处时,E点经过的路径长为.22.(8分)(1)解方程:(2)如图,正六边形的边长为2,以点为圆心,长为半径画弧,求弧的长.23.(8分)在中,.(1)如图①,点在斜边上,以点为圆心,长为半径的圆交于点,交于点,与边相切于点.求证:;(2)在图②中作,使它满足以下条件:①圆心在边上;②经过点;③与边相切.(尺规作图,只保留作图痕迹,不要求写出作法)24.(8分)如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=ax2+2x+c的表达式;(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C,若四边形POP′C为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.25.(10分)化简分式,并从﹣1≤x≤3中选一个你认为合适的整数x代入求值.26.(10分)一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg,且不高于180元/kg,经销一段时间后得到如下数据:设y与x的关系是我们所学过的某一种函数关系.(1)写出y与x的函数关系式,并指出自变量x的取值范围;(2)当销售单价为多少时,销售利润最大?最大利润是多少?
参考答案一、选择题(每小题3分,共30分)1、B【分析】先将各选项一元二次方程化为一般式,再计算判别式即得.【详解】A选项中,则,,,则,有两个相等的实数根,不符合题意;B选项可化为,则,,,则,有两个不相等的实数根,符合题意;C选项可化为,则,,,则,无实数根,不符合题意;D选项可化为,则,,,则,无实数根,不符合题意.故选:B.【点睛】本题考查了一元二次方程根的判别式,解题关键是熟知:判别式时,一元二次方程有两个不相等的实数根;判别式时,一元二次方程有两个相等的实数根;判别式时,一元二次方程无实数根.2、C【解析】根据图形可知※代表CD,即可判断D;根据三角形外角的性质可得◎代表∠EFC,即可判断A;利用等量代换得出▲代表∠EFC,即可判断C;根据图形已经内错角定义可知@代表内错角.【详解】延长BE交CD于点F,则∠BEC=∠EFC+∠C(三角形的外角等于与它不相邻两个内角之和).又∠BEC=∠B+∠C,得∠B=∠EFC.故AB∥CD(内错角相等,两直线平行).故选C.【点睛】本题考查了平行线的判定,三角形外角的性质,比较简单.3、A【分析】利用解直角三角形知识.在边长为a和b两正方形上方的两直角三角形中由正切可得,化简得b=a+c,故选A.【详解】请在此输入详解!4、B【分析】根据二次函数的图象与性质(对称性、与x轴、y轴的交点)、二次函数与一元二次方程的关系逐个判断即可.【详解】抛物线的开口向下对称轴为,异号,则抛物线与y轴的交点在y轴的上方,则①正确由图象可知,时,,即则,②错误由对称性可知,和的函数值相等则时,,即,③错误可化为关于m的一元二次方程的根的判别式则二次函数的图象特征:抛物线的开口向下,与x轴只有一个交点因此,,即,从而④正确综上,正确的是①④故选:B.【点睛】本题考查了二次函数的图象与性质(对称性、与x轴、y轴的交点)、二次函数与一元二次方程的关系,熟练掌握函数的图象与性质是解题关键.5、C【分析】利用直接开平方法解方程即可得答案.【详解】(x-3)2=25,∴x-3=±5,∴x=8或x=-2,故选:C.【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:直接开平方法、配方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.6、D【分析】根据表格确定出抛物线的对称轴,开口方向,然后根据二次函数的图像与性质解答即可.【详解】∵当x=1时,y=6;当x=1时,y=6,∴二次函数图象的对称轴为直线x=2,∴二次函数图象的顶点坐标是(2,7),由表格中的数据知,抛物线开口向下,∴当y<6时,x<1或x>1.故选D.【点睛】本题考察了二次函数的图像和性质,对于二次函数y=ax2+bx+c(a,b,c为常数,a≠0),当a>0时,开口向上,在对称轴的左侧y随x的增大而减小,在对称轴的右侧y随x的增大而增大;当a<0时,开口向下,在对称轴的左侧y随x的增大而增大,在对称轴的右侧y随x的增大而减小.7、B【解析】根据三角形中位线定理和三角形的面积即可得到结论.【详解】∵D是AB的中点,DE∥BC,∴CE=AE.∴DE=BC,∵S△DEB=1,∴S△BCE=2,故选:B.【点睛】本题考查了三角形中位线定理,熟练掌握并运用三角形中位线定理是解题的关键.8、D【分析】通过对简单组合体的观察,从左边看圆柱是一个长方形,从左边看正方体是一个正方形,但是两个立体图形是并排放置的,正方体的左视图被圆柱的左视图挡住了,只能看到长方形,邻边用虚线画出即可.【详解】从左边看圆柱的左视图是一个长方形,从左边看正方体的左视图是一个正方形,从左边看圆柱与正方体组合体的左视图是一个长方形,两图形的邻边用虚线画出,则如图所示的物体组合的左视图如D选项所示,故选:D.【点睛】本题考查了简单组合体的三视图.解答此题要注意进行观察和思考,既要丰富的数学知识,又要有一定的生活经验和空间想象力.9、D【分析】首先证明△ABD∽△ACD,然后根据BD:CD=3:2,设BD=3x,CD=2x,利用对应边成比例表示出AD的值,继而可得出tanB的值.【详解】在Rt△ABC中,∵AD⊥BC于点D,∴∠ADB=∠CDA.∵∠B+∠BAD=90°,∠BAD+DAC=90°,∴∠B=∠DAC.∴△ABD∽△CAD.∴DB:AD=AD:DC.∵BD:CD=3:2,∴设BD=3x,CD=2x.∴AD=∴tanB=故选D.【点睛】本题考查了相似三角形的判定与性质及锐角三角函数的定义,难度一般,解答本题的关键是根据垂直证明三角形的相似,根据对应边成比例求边长.10、C【分析】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:A、x2﹣x(x+3)=0,化简后为﹣3x=0,不是关于x的一元二次方程,故此选项不合题意;B、ax2+bx+c=0,当a=0时,不是关于x的一元二次方程,故此选项不合题意;C、x2﹣2x﹣3=0是关于x的一元二次方程,故此选项符合题意;D、x2﹣2y﹣1=0含有2个未知数,不是关于x的一元二次方程,故此选项不合题意;故选:C.【点睛】此题主要考查了一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.二、填空题(每小题3分,共24分)11、【解析】∵,根据和比性质,得==,故答案为.12、8π【解析】试题分析:先求得正多边形的每一个内角,然后由弧长计算公式.解:方法一:先求出正六边形的每一个内角==120°,所得到的三条弧的长度之和=3×=8π(cm);方法二:先求出正六边形的每一个外角为60°,得正六边形的每一个内角120°,每条弧的度数为120°,三条弧可拼成一整圆,其三条弧的长度之和为8πcm.故答案为8π.考点:弧长的计算;正多边形和圆.13、大【解析】因为二次函数的开口向上,所以点M,N向上平移时,距离对称轴的距离越大,即MN的长度随直线向上平移而变大,故答案为:大.14、【解析】连接AC,与对称轴交于点P,此时DE+DF最小,求解即可.【详解】连接AC,与对称轴交于点P,此时DE+DF最小,点D、E、F分别是BC、BP、PC的中点,在二次函数y=x2+2x﹣3中,当时,当时,或即点P是抛物线对称轴上任意一点,则PA=PB,PA+PC=AC,PB+PC=DE+DF的最小值为:故答案为【点睛】考查二次函数图象上点的坐标特征,三角形的中位线,勾股定理等知识点,找出点P的位置是解题的关键.15、或或【分析】根据二次函数与x轴的负半轴交于点,与轴交于点.直接令x=0和y=0求出A,B的坐标.再根据平行四边形的性质分情况求出点E的坐标.【详解】由抛物线的表达式求得点的坐标分别为.由题意知当为平行四边形的边时,,且,∴线段可由线段平移得到.∵点在直线上,①当点的对应点为时,如图,需先将向左平移1个单位长度,此时点的对应点的横坐标为,将代入,得,∴.②当点A的对应点为时,同理,先将向右平移2个单位长度,可得点的对应点的横坐标为2,将代入得,∴当为平行四边形的对角线时,可知的中点坐标为,∵在直线上,∴根据对称性可知的横坐标为,将代入得,∴.综上所述,点的坐标为或或.【点睛】本题是二次函数的综合题,主要考查了特殊点的坐标的确定,平行四边形的性质,解本题的关键是分情况解决问题的思想.16、1.【分析】过点A作AE⊥y轴于点E,首先得出矩形EODA的面积为:4,利用矩形ABCD的面积是9,则矩形EOCB的面积为:4+9=1,再利用xy=k求出即可.【详解】过点A作AE⊥y轴于点E,∵点A在双曲线y=上,∴矩形EODA的面积为:4,∵矩形ABCD的面积是9,∴矩形EOCB的面积为:4+9=1,则k的值为:xy=k=1.故答案为1.【点睛】此题主要考查了反比例函数关系k的几何意义,得出矩形EOCB的面积是解题关键.17、B【分析】用“用时不超过15分钟”的人数除以总人数即可求得概率;先分别求出A线路不超过20分钟的人数和B线路不超过20分钟的人数,再进行比较即可得出答案.【详解】∵在A地铁站“乘车等待时间不超过15分钟有50+50=100人,∴在A地铁站“乘车等待时间不超过15分钟”的概率为=,∵A线路不超过20分钟的有50+50+152=252人,B线路不超过20分钟的有45+215+167=427人,∴选择B线路,故答案为:,B.【点睛】此题考查了用频率估计概率的知识,能够读懂图是解答本题的关键,难度不大;用到的知识点为:概率=所求情况数与总情况数之比.18、3【解析】根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.【详解】由题意可知:∠AOB=2∠ACB=2×40°=80°,设扇形半径为x,故阴影部分的面积为πx2×=×πx2=2π,故解得:x1=3,x2=-3(不合题意,舍去),故答案为3.【点睛】本题主要考查了圆周角定理以及扇形的面积求解,解本题的要点在于根据题意列出关于x的方程,从而得到答案.三、解答题(共66分)19、(1)a=16,b=17.5(2)90(3)【解析】试题分析:(1)首先求得总人数,然后根据百分比的定义求解;(2)利用总数乘以对应的百分比即可求解;(3)利用列举法,根据概率公式即可求解.试题解析:(1)a=5÷12.5%×40%=16,5÷12.5%=7÷b%,∴b=17.5,故答案为16,17.5;(2)600×[6÷(5÷12.5%)]=90(人),故答案为90;(3)如图,∵共有20种等可能的结果,两名主持人恰为一男一女的有12种情况,∴则P(恰好选到一男一女)==.考点:列表法与树状图法;用样本估计总体;扇形统计图.20、1.【解析】分析:分别求出不等式组中两不等式的解集,找出解集的公共部分确定出解集,找出整数解即可.详解:解不等式(x+1)≤2,得:x≤3,解不等式,得:x≥0,则不等式组的解集为0≤x≤3,所以不等式组的整数解之和为0+1+2+3=1.点睛:此题考查了解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.21、(1)1;BE1+CD1=4AD1;(1)能满足(1)中的结论,见解析;(3)1【分析】(1)依据旋转性质可得:DE=DA=CD,∠BDE=∠ADB=60°,再证明:△BDE≌△BDA,利用勾股定理可得结论;(1)将△ACD绕点A顺时针旋转110°得到△ABD′,再证明:∠D′BE=∠D′AE=90°,利用勾股定理即可证明结论仍然成立;(3)从(1)中发现:∠CBE=30°,即:点D运动路径是线段;分别求出点D位于D1时和点D运动到M时,对应的BE长度即可得到结论.【详解】解:(1)如图1,∵AB=AC,∠BAC=110°,∴∠ABC=∠ACB=30°,∵AD=DC∴∠CAD=∠ACB=30°,∠ADB=∠CAD+∠ACB=60°,∴∠BAD=90°,由旋转得:DE=DA=CD,∠BDE=∠ADB=60°∴△BDE≌△BDA(SAS)∴∠BED=∠BAD=90°,BE=AB=∴BE1+CD1=BE1+DE1=BD1∵=cos∠ADB=cos60°=∴BD=1AD∴BE1+CD1=4AD1;故答案为:;BE1+CD1=4AD1;(1)能满足(1)中的结论.如图1,将△ACD绕点A顺时针旋转110°得到△ABD′,使AC与AB重合,∵∠DAD′=110°,∠BAD′=∠CAD,∠ABD′=∠ACB=30°,AD′=AD=DE,∠DAE=∠AED=30°,BD′=CD,∠AD′B=∠ADC∴∠D′AE=90°∵∠ADB+∠ADC=180°∴∠ADB+∠AD′B=180°∴A、D、B、D′四点共圆,同理可证:A、B、E、D四点共圆,A、E、B、D′四点共圆;∴∠D′BE=90°∴BE1+BD′1=D′E1∵在△AD′E中,∠AED′=30°,∠EAD′=90°∴D′E=1AD′=1AD∴BE1+BD′1=(1AD)1=4AD1∴BE1+CD1=4AD1.(3)由(1)知:经过B、E、D三点的圆必定经过D′、A,且该圆以D′E为直径,该圆最小即D′E最小,∵D′E=1AD∴当AD最小时,经过B、E、D三点的圆最小,此时,AD⊥BC如图3,过A作AD1⊥BC于D1,∵∠ABC=30°∴BD1=AB•cos∠ABC=cos30°=3,AD1=∴D1M=BD1﹣BM=3﹣1=1由(1)知:在D运动过程中,∠CBE=30°,∴点D运动路径是线段;当点D位于D1时,由(1)中结论得:,∴BE1=当点D运动到M时,易求得:BE1=∴E点经过的路径长=BE1+BE1=1故答案为:1.【点睛】本题考查的是圆的综合,综合性很强,难度系数较大,运用到了全等和勾股定理等相关知识需要熟练掌握相关基础知识.22、(1),;(2)【分析】(1)由因式分解法即可得出答案;
(2)由正六边形的性质和弧长公式即可得出结果.【详解】(1)解:,,,∴,∴,.(2)解:六边形是正六边形,∴∴弧的长为.【点睛】此题考查正多边形和圆,一元二次方程的解,弧长公式,熟练掌握正六边形的性质和一元二次方程的解法是解题的关键.23、(1)见解析(2)见解析【解析】(1)连接,可证得,结合平行线的性质和圆的特性可求得,可得出结论;(2)由(1)可知切点是的角平分线和的交点,圆心在的垂直平分线上,由此即可作出.【详解】(1)证明:如图①,连接,∵是的切线,∴,∵,∴,∴,∵,∴,∴.(2)如图②所示为所求.①①作平分线交于点,②作的垂直平分线交于,以为半径作圆,即为所求.证明:∵在的垂直平分线上,∴,∴,又∵平分,∴,∴,∴,∵,∴,∴与边相切.【点睛】本题主要考查圆和切线的性质和基本作图的综合应用.掌握连接圆心和切点的半径与切线垂直是解题的关键,24、(1)y=﹣x2+2x+3(2)(,)(3)当点P的坐标为(,)时,四边形ACPB的最大面积值为【分析】(1)根据待定系数法,可得函数解析式;(2)根据菱形的对角线互相垂直且平分,可得P点的纵坐标,根据自变量与函数值的对应关系,可得P点坐标;(3)根据平行于y轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PQ的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案.【详解】(1)将点B和点C的坐标代入函数解析式,得解得二次函数的解析式为y=﹣x2+2x+3;(2)若四边形POP′C为菱形,则点P在线段CO的垂直平分线上,如图1,连接PP′,则PE⊥CO,垂足为E,∵C(0,3),∴∴点P的纵坐标,当时,即解得(不合题意,舍),∴点P的坐标为(3)如图2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 热销销售代理合同样本集
- 建筑用地承包合同汇编
- 代理加盟协议书范本
- 商业铺位转让协议样本
- 国际石油合作权益转让合同
- 合伙经营食品店合同书
- 合租租房合同样本:2024年合租租赁协议模板
- 酒店预订服务协议书模板
- 字画作品买卖协议
- 室外停车场租赁合同范例
- 中国农业银行贷后管理办法
- MOOC 陶瓷装饰·彩绘-无锡工艺职业技术学院 中国大学慕课答案
- 小学科学苏教版四年级上册全册教案(2023秋新课标版)
- 信访纠纷化解预案
- 硅晶圆缺陷的化学性质与影响
- 《布的基本知识》课件
- 全国高中化学优质课大赛《氧化还原反应》课件
- 超声波的基本性质讲解
- 生涯发展报告 (修改)
- 常见信访问题及答复依据(57)课件
- 华为总裁办部门职责
评论
0/150
提交评论