




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,、、是小正方形的顶点,且每个小正方形的边长为1,则的值为()A. B.1 C. D.2.二次函数的顶点坐标为()A. B. C. D.3.抛物线的顶点坐标是()A. B. C. D.4.如图,在矩形中,.将向内翻折,点落在上,记为,折痕为.若将沿向内翻折,点恰好落在上,记为,则的长为()A. B. C. D.5.已知x1、x2是关于x的方程x2-ax-1=0的两个实数根,下列结论一定正确的是()A.x1≠x2 B.x1+x2>0 C.x1x2>0 D.+>06.方程x2+2x-5=0经过配方后,其结果正确的是A. B.C. D.7.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次一定抛掷出5点B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等C.明天降雨的概率是80%,表示明天有80%的时间降雨D.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖8.某校为了了解九年级学生的体能情况,随机抽取了名学生测试1分钟仰卧起坐的次数,统计结果并绘制成如图所示的频数分布直方图.已知该校九年级共有名学生,请据此估计,该校九年级分钟仰卧起坐次数在次之间的学生人数大约是()A. B.C. D.9.在小孔成像问题中,如图所示,若为O到AB的距离是18cm,O到CD的距离是6cm,则像CD的长是物体AB长的()A. B. C.2倍 D.3倍10.如图,为圆的切线,交圆于点,为圆上一点,若,则的度数为().A. B. C. D.11.如图直角三角板∠ABO=30°,直角项点O位于坐标原点,斜边AB垂直于x轴,顶点A在函数的y1=图象上,顶点B在函数y2=的图象上,则=()A. B. C. D.12.如图,在平面直角坐标系中,半径为2的圆P的圆心P的坐标为(﹣3,0),将圆P沿x轴的正方向平移,使得圆P与y轴相切,则平移的距离为()A.1 B.3 C.5 D.1或5二、填空题(每题4分,共24分)13.若关于的一元二次方程有实数根,则的取值范围是_____.14.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=(x﹣1)2﹣4,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为_____.15.已知抛物线的对称轴是y轴,且经过点(1,3)、(2,6),则该抛物线的解析式为_____.16.如图,在平面直角坐标系中,▱ABCD的顶点B,C在x轴上,A,D两点分别在反比例函数y=﹣(x<0)与y=(x>0)的图象上,若▱ABCD的面积为4,则k的值为:_____.17.已知一个不透明的盒子中装有3个红球,2个白球,这些球除颜色外均相同,现从盒中任意摸出1个球,则摸到红球的概率是________
.18.不等式组的解集是_____________.三、解答题(共78分)19.(8分)在平面直角坐标系中,函数图象上点的横坐标与其纵坐标的和称为点的“坐标和”,而图象上所有点的“坐标和”中的最小值称为图象的“智慧数”.如图:抛物线上有一点,则点的“坐标和”为6,当时,该抛物线的“智慧数”为1.(1)点在函数的图象上,点的“坐标和”是;(2)求直线的“智慧数”;(3)若抛物线的顶点横、纵坐标的和是2,求该抛物线的“智慧数”;(4)设抛物线顶点的横坐标为,且该抛物线的顶点在一次函数的图象上;当时,抛物线的“智慧数”是2,求该抛物线的解析式.20.(8分)如图,四边形ABCD是⊙O的内接四边形,∠AOC=116°,则∠ADC的角度是_____.21.(8分)化简求值:,其中.22.(10分)我们不妨约定:如图①,若点D在△ABC的边AB上,且满足∠ACD=∠B(或∠BCD=∠A),则称满足这样条件的点为△ABC边AB上的“理想点”.(1)如图①,若点D是△ABC的边AB的中点,AC=,AB=4.试判断点D是不是△ABC边AB上的“理想点”,并说明理由.(2)如图②,在⊙O中,AB为直径,且AB=5,AC=4.若点D是△ABC边AB上的“理想点”,求CD的长.(3)如图③,已知平面直角坐标系中,点A(0,2),B(0,-3),C为x轴正半轴上一点,且满足∠ACB=45°,在y轴上是否存在一点D,使点A是B,C,D三点围成的三角形的“理想点”,若存在,请求出点D的坐标;若不存在,请说明理由.23.(10分)如图,是中边上的中点,交于点,是中边上的中点,且与交于点.(1)求的值.(2)若,求的长.(用含的代数式表示)24.(10分)为给邓小平诞辰周年献礼,广安市政府对城市建设进行了整改,如图所示,已知斜坡长60米,坡角(即)为,,现计划在斜坡中点处挖去部分斜坡,修建一个平行于水平线的休闲平台和一条新的斜坡(下面两个小题结果都保留根号).(1)若修建的斜坡BE的坡比为:1,求休闲平台的长是多少米?(2)一座建筑物距离点米远(即米),小亮在点测得建筑物顶部的仰角(即)为.点、、、,在同一个平面内,点、、在同一条直线上,且,问建筑物高为多少米?25.(12分)已知一个二次函数的图象经过A(0,﹣3),B(1,0),C(m,2m+3),D(﹣1,﹣2)四点,求这个函数解析式以及点C的坐标.26.参照学习函数的过程方法,探究函数的图像与性质,因为,即,所以我们对比函数来探究列表:…-4-3-2-11234……124-4-2-1……235-3-20…描点:在平面直角坐标系中以自变量的取值为横坐标,以相应的函数值为纵坐标,描出相应的点如图所示:(1)请把轴左边各点和右边各点分别用一条光滑曲线,顺次连接起来;(2)观察图象并分析表格,回答下列问题:①当时,随的增大而______;(“增大”或“减小”)②的图象是由的图象向______平移______个单位而得到的;③图象关于点______中心对称.(填点的坐标)(3)函数与直线交于点,,求的面积.
参考答案一、选择题(每题4分,共48分)1、C【分析】连接BC,AB=,BC=,AC=,得到△ABC是直角三角形,从而求解.【详解】解:连接BC,由勾股定理可得:AB=,BC=,AC=,∵∴△ABC是直角三角形,∴故选:C.【点睛】本题考查直角三角形,勾股定理;熟练掌握在方格中利用勾股定理求边长,同时判断三角形形状是解题的关键.2、D【分析】已知二次函数y=2x2+3为抛物线的顶点式,根据顶点式的坐标特点直接写出顶点坐标.【详解】∵y=2x2+3=2(x−0)2+3,∴顶点坐标为(0,3).故选:D.【点睛】本题考查了二次函数的性质:二次函数的图象为抛物线,则解析式为y=a(x−k)2+h的顶点坐标为(k,h),3、D【分析】当时,是抛物线的顶点,代入求出顶点坐标即可.【详解】由题意得,当时,是抛物线的顶点代入到抛物线方程中∴顶点的坐标为故答案为:D.【点睛】本题考查了抛物线的顶点坐标问题,掌握求二次函数顶点的方法是解题的关键.4、B【分析】首先根据矩形和翻折的性质得出△AED≌△A'ED,△A'BE≌△A'B'E,∠A'B'E=∠B=∠A'B'D=90°,∠AED=∠A'ED,∠A'EB=∠A'EB',BE=B'E,进而得出∠AED=∠A'ED=∠A'EB=60°,∠ADE=∠A'DE=∠A'DC=30°,判定△DB'A'≌△DCA',DC=DB',得出AE,设AB=DC=x,利用勾股定理构建方程,即可得解.【详解】∵四边形ABCD为矩形,∴∠ADC=∠C=∠B=90°,AB=DC,由翻折知,△AED≌△A'ED,△A'BE≌△A'B'E,∠A'B'E=∠B=∠A'B'D=90°,∴∠AED=∠A'ED,∠A'EB=∠A'EB',BE=B'E,∴∠AED=∠A'ED=∠A'EB=×180°=60°,∴∠ADE=90°﹣∠AED=30°,∠A'DE=90°﹣∠A'EB=30°,∴∠ADE=∠A'DE=∠A'DC=30°,又∵∠C=∠A'B'D=90°,DA'=DA',∴△DB'A'≌△DCA'(AAS),∴DC=DB',在Rt△AED中,∠ADE=30°,AD=2,∴AE=,设AB=DC=x,则BE=B'E=x﹣∵AE2+AD2=DE2,∴()2+22=(x+x﹣)2,解得,x1=(负值舍去),x2=,故答案为B.【点睛】本题考查了矩形的性质,轴对称的性质等,解题关键是通过轴对称的性质证明∠AED=∠A'ED=∠A'EB=60°.5、A【解析】根据方程的系数结合根的判别式,可得出△=a1+4>0,进而可得出x1≠x1,此题得解.【详解】∵△=(﹣a)1﹣4×1×(﹣1)=a1+4>0,∴方程x1﹣ax﹣1=0有两个不相等的实数根,∴x1≠x1.故选A.【点睛】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.6、C【详解】解:根据配方法的意义,可知在方程的两边同时加减一次项系数的一半的平方,可知,即,配方为.故选:C.【点睛】此题主要考查了配方法,解题关键是明确一次项的系数,然后在方程的两边同时加减一次项系数的一半的平方,即可求解.7、B【分析】根据概率的求解方法逐一进行求解即可得.【详解】A.无论一颗质地均匀的骰子多少次,每次抛掷出5点的概率都是,故A错误;B.抛掷一枚图钉,因为图钉质地不均匀,钉尖触地和钉尖朝上的概率不相等,故B正确;C.明天降雨的概率是80%,表示明天有80%的可能性降雨,故C错误D.某种彩票中奖的概率是1%,表明中奖的概率为1%,故D错误故答案为:B.【点睛】本题考查了对概率定义的理解,熟练掌握是解题的关键.8、B【分析】用样本中次数在30~35次之间的学生人数所占比例乘以九年级总人数可得.【详解】解:该校九年级1分钟仰卧起坐次数在30~35次之间的学生人数大约是×150=25(人),故选:B.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.9、A【分析】作OE⊥AB于E,OF⊥CD于F,根据题意得到△AOB∽△COD,根据相似三角形的对应高的比等于相似比计算即可.【详解】作OE⊥AB于E,OF⊥CD于F,由题意得,AB∥CD,∴△AOB∽△COD,∴==,∴像CD的长是物体AB长的.故答案选:A.【点睛】本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用.10、B【分析】根据切线的性质以及圆周角定理求解即可.【详解】连接OA∵为圆的切线∴∵∴∴故答案为:B.【点睛】本题考查了圆的角度问题,掌握切线的性质以及圆周角定理是解题的关键.11、D【分析】设AC=a,则OA=2a,OC=a,根据直角三角形30°角的性质和勾股定理分别计算点A和B的坐标,写出A和B两点的坐标,代入解析式求出k1和k2的值,即可求的值.【详解】设AB与x轴交点为点C,Rt△AOB中,∠B=30°,∠AOB=90°,∴∠OAC=60°,∵AB⊥OC,∴∠ACO=90°,∴∠AOC=30°,设AC=a,则OA=2a,OC=a,∴A(a,a),∵A在函数y1=的图象上,∴k1=a×a=a2,Rt△BOC中,OB=2OC=2a,∴BC==3a,∴B(a,﹣3a),∵B在函数y2=的图象上,∴k2=﹣3a×a=﹣3a2,∴=,故选:D.【点睛】此题考查反比例函数的性质,勾股定理,直角三角形的性质,设AC=a是解题的关键,由此表示出其他的线段求出k1与k2的值,才能求出结果.12、D【分析】分圆P在y轴的左侧与y轴相切、圆P在y轴的右侧与y轴相切两种情况,根据切线的判定定理解答.【详解】当圆P在y轴的左侧与y轴相切时,平移的距离为3-2=1,当圆P在y轴的右侧与y轴相切时,平移的距离为3+2=5,故选D.【点睛】本题考查的是切线的判定、坐标与图形的变化-平移问题,掌握切线的判定定理是解题的关键,解答时,注意分情况讨论思想的应用.二、填空题(每题4分,共24分)13、且k≠1.【分析】根据一元二次方程的定义和判别式的意义得到且,然后求出两个不等式的公共部分即可.【详解】解:根据题意得且,
解得:且k≠1.
故答案是:且k≠1.【点睛】本题考查了一元二次方程ax2+bx+c=1(a≠1)的根的判别式△=b2-4ac:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.14、1+【分析】利用二次函数图象上点的坐标特征可求出点A、B、D的坐标,进而可得出OD、OA、OB,根据圆的性质可得出OM的长度,在Rt△COM中,利用勾股定理可求出CO的长度,再根据CD=CO+OD即可求出结论.【详解】当x=0时,y=(x﹣1)2﹣4=﹣1,∴点D的坐标为(0,﹣1),∴OD=1;当y=0时,有(x﹣1)2﹣4=0,解得:x1=﹣1,x2=1,∴点A的坐标为(﹣1,0),点B的坐标为(0,1),∴AB=4,OA=1,OB=1.连接CM,则CM=AB=2,OM=1,如图所示.在Rt△COM中,CO==,∴CD=CO+OD=1+.故答案为1+.【点睛】先根据二次函数与一元二次方程的关系,勾股定理,熟练掌握二次函数与一元二次方程的关系是解答本题的关键.15、y=x1+1【分析】根据抛物线的对称轴是y轴,得到b=0,设出适当的表达式,把点(1,3)、(1,6)代入设出的表达式中,求出a、c的值,即可确定出抛物线的表达式.【详解】∵抛物线的对称轴是y轴,∴设此抛物线的表达式是y=ax1+c,把点(1,3)、(1,6)代入得:,解得:a=1,c=1,则此抛物线的表达式是y=x1+1,故答案为:y=x1+1.【点睛】本题考查代定系数法求函数的解析式,根据抛物线的对称轴是y轴,得到b=0,再设抛物线的表达式是y=ax1+c是解题的关键.16、2【分析】连接OA、OD,如图,利用平行四边形的性质得AD垂直y轴,则利用反比例函数的比例系数k的几何意义得到S△OAE和S△ODE,所以S△OAD=+,,然后根据平行四边形的面积公式可得到▱ABCD的面积=2S△OAD=2,即可求出k的值.【详解】连接OA、OD,如图,∵四边形ABCD为平行四边形,∴AD垂直y轴,∴S△OAE=×|﹣3|=,S△ODE=×|k|,∴S△OAD=+,∵▱ABCD的面积=2S△OAD=2.∴3+|k|=2,∵k>0,解得k=2,故答案为2.【点睛】此题考查平行四边形的性质、反比例函数的性质,反比例函数图形上任意一点向两个坐标轴作垂线构成的矩形面积等于,再与原点连线分矩形为两个三角形,面积等于.17、【分析】先求出这个口袋里一共有球的个数,然后用红球的个数除以球的总个数即可.【详解】因为共有5个球,其中红球由3个,所以从中任意摸出一个球是红球的概率是,故答案为.【点睛】本题考查了概率公式,掌握概率=所求情况数与总情况数之比是解题的关键.18、【分析】根据解一元一次不等式组的方法求解即可;【详解】解:由不等式①得,,由不等式②得,x<4,故不等式组的解集是:;故答案为:.【点睛】本题主要考查了一元一次不等式组,掌握一元一次不等式是解题的关键.三、解答题(共78分)19、(1)4;(2)直线“智慧数”等于;(3)抛物线的“智慧数”是;(4)抛物线的解析式为或【分析】(1)先求出点N的坐标,然后根据“坐标和”的定义计算即可;(2)求出,然后根据一次函数的增减性和“智慧数”的定义计算即可;(3)先求出抛物线的顶点坐标,即可列出关于b和c的等式,然后求出,然后利用二次函数求出y+x的最小值即可得出结论;(4)根据题意可设二次函数为,坐标和为,即可求出与x的二次函数关系式,求出与x的二次函数图象的对称轴,先根据已知条件求出m的取值范围,然后根据与对称轴的相对位置分类讨论,分别求出的最小值列出方程即可求出结论.【详解】解:(1)将y=2代入到解得x=2∴点N的坐标为(2,2)∴点的“坐标和”是2+2=4故答案为:4;(2),∵,∴当时,最小,即直线,“智慧数”等于(3)抛物线的顶点坐标为,∴,即∵,∴的最小值是∴抛物线的“智慧数”是;(4)∵二次函数的图象的顶点在直线上,∴设二次函数为,坐标和为对称轴∵∴①当时,即时,“坐标和”随的增大而增大∴把代入,得,解得(舍去),,当时,②当,即时,,即,解得,当时,③当时,∵,所以此情况不存在综上,抛物线的解析式为或【点睛】此题考查的新定义类问题、二次函数、一次函数和反比例函数的综合题型,掌握新定义、利用二次函数和一次函数求最值是解决此题的关键.20、58°【分析】直接利用圆周角定理求解.【详解】∵∠AOC和∠ADC都对,∴∠ADC=∠AOC=×116°=58°.故答案为:58°.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.21、,1【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将的值代入计算即可求出值.【详解】;当时,原式.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.22、(1)是,理由见解析;(2);(3)D(0,42)或D(0,6)【分析】(1)依据边长AC=,AB=4,D是边AB的中点,得到AC2=,可得到两个三角形相似,从而得到∠ACD=∠B;(2)由点D是△ABC的“理想点”,得到∠ACD=∠B或∠BCD=∠A,分两种情况证明均得到CD⊥AB,再根据面积法求出CD的长;(3)使点A是B,C,D三点围成的三角形的“理想点”,应分两种情况讨论,利用三角形相似分别求出点D的坐标即可.【详解】(1)D是△ABC边AB上的“理想点”,理由:∵AB=4,点D是△ABC的边AB的中点,∴AD=2,∵AC2=8,,∴AC2=,又∵∠A=∠A,∴△ADC∽△ACB,∴∠ACD=∠B,∴D是△ABC边AB上的“理想点”.(2)如图②,∵点D是△ABC的“理想点”,∴∠ACD=∠B或∠BCD=∠A,当∠ACD=∠B时,∵∠ACD+∠BCD=90,∴∠BCD+∠B=90,∴∠CDB=90,当∠BCD=∠A时,同理可得CD⊥AB,在Rt△ABC中,∵∠ACB=90,AB=5,AC=4,∴BC==3,∵,∴,∴.(3)如图③,存在.过点A作MA⊥AC交CB的延长线于点M,∵∠MAC=∠AOC=90,∠ACM=45,∴∠AMC=∠ACM=45,∴AM=AC,∵∠MAH+∠CAO=90,∠CAO+∠ACO=90,∴∠MAH=∠ACO,∴△AHM≌△COA∴MH=OA,OC=AH,设C(a,0),∵A(0,2),B(0,-3),∴OA=MH=2,OB=3,AB=5,OC=AH=a,BH=a-5,∵MH∥OC,∴,∴,解得a=6或a=-1(舍去),经检验a=6是原分式方程的解,∴C(6,0),OC=6.①当∠D1CA=∠ABC时,点A是△BCD1的“理想点”,设D1(0,m),∵∠D1CA=∠ABC,∠CD1A=∠CD1B,∴△D1AC∽△D1CB,∴,∴,解得m=42,∴D1(0,42);②当∠BCA=∠CD2B时,点A是△BCD2“理想点”,可知:∠CD2O=45,∴OD2=OC=6,∴D2(0,6).综上,满足条件的点D的坐标为D(0,42)或D(0,6).【点睛】此题考查相似三角形的判定及性质,通过证明三角形相似得到点是三角形某条边上的“理想点”,通过点是三角形的“理想点”,从而证明出三角形相似,由此得到点的坐标,相互反推的思想的利用,注意后者需分情况进行讨论.23、(1);(2)【分析】(1)通过证明,再根据相似三角形对应边成比例即可求出;(2)设AB=m,由是中边上的中点,可得,进而得出,根据题意,进而得出【详解】解:(1)∵为的中点,,∴为的中点,,∴,∴,∴,∴,∴.(2)∵,∴.∵,∴.∵,∴.【点睛】本题考查了相似三角形的判定及性质和三角形的中位线定理,熟练掌握相关性质结合题目条件论证是解题的关键.24、(1)m(2)米【解析】分析:(1)由三角函数的定义,即可求得AM与AF的长,又由坡度的定义,即可求得NF的长,继而求得平台MN的长;(2)在RT△BMK中,求得BK=MK=50米,从而求得EM=84米;在RT△HEM中,求得,继而求得米.详解:(1)∵MF∥BC,∴∠AMF=∠ABC=45°,∵斜坡AB长米,M是AB的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五专职消防员聘用合同范例
- 二零二五全新签约艺人合同模板
- 股份协议合同范本餐饮
- 公司工厂转让合同范本
- 基坑监测合同范本
- 防烫伤安全教育课
- 趣味造型设计课件
- 苹果课件转化方法
- 2025年中温陶锅项目可行性研究报告
- 校园禁烟控烟教育班会
- 北京市消防条例解读
- 外研版(2025新版)七年级下册英语Unit 4 学情调研测试卷(含答案)
- DL∕T 1751-2017 燃气-蒸汽联合循环机组余热锅炉运行规程
- 医院检验科实验室生物安全程序文件SOP
- JTG D70-2-2014 公路隧道设计规范 第二册 交通工程与附属设施
- 呼吸内科利用品管圈PDCA循环提高患者对无创呼吸机的有效使用率
- 出境领队服务程序与规范(共36页).ppt
- 典雅中国风工笔画PPT模板
- 国家开放大学《理工英语3》章节测试参考答案
- 幼儿园安全问题的研究
- 事业单位工作人员调动审批表
评论
0/150
提交评论