版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
会计学1等腰三角形第四课时课件说明本节课在学习了轴对称、等边三角形的性质及判定的基础上,探究直角三角形的一条特殊性质,它反映了直角三角形中的边角关系.本节课是等边三角形性质的简单运用,同时也为九年级学习锐角三角函数作了一定的知识储备.第1页/共20页学习目标:
1.探索含30°角的直角三角形的性质.
2.理解含30°角的直角三角形的性质,并会应用它进行有关的证明和计算.学习重点:探索并理解含30°角的直角三角形的性质.课件说明第2页/共20页问题已知△ABC中,∠A=60°,(
).请你在括号内补充一个条件,使△ABC能成为等边三角形.∠B=60°(或∠C=60°)AB=BC、AC=BC、AB=BC=AC
创设情境,导入新知ABC第3页/共20页思考2这个特殊的直角三角形相比一般的直角三角形有什么不同之处,它有什么特殊性质?创设情境,导入新知思考1等边三角形是轴对称图形,若沿着其中一条对称轴折叠,能产生什么特殊图形?第4页/共20页活动用两个全等的含30°角的直角三角尺,你能拼出怎样的三角形?能拼出等边三角形吗?请说说你的理由.活动操作,探索性质ABDCABCD第5页/共20页BC=AB.
活动操作,探索性质问题你能借助这个图形,找到含30°角的直角△ABC的直角边BC与斜边AB之间有什么数量关系吗?ABDC第6页/共20页思考这个命题是真命题吗?请进行证明.问题请说一说你猜想的命题中,条件和结论分别是什么?并结合图形,用符号语言表述出来.活动操作,探索性质猜想在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.第7页/共20页证明:在△ABC中,∵∠C=90°,∠A=30°,∴∠B=60°.延长BC到D,使BD=AB,连接AD,则△ABD是等边三角形.已知:如图,在Rt△ABC中,∠C=90°,∠A=
30°.求证:BC=AB.活动操作,探索性质ABCD第8页/共20页∴BC=BD=AB.已知:如图,在Rt△ABC中,∠C=90°,∠A=
30°.求证:BC=AB.追问:你还能用其他方法证明吗?活动操作,探索性质证明:由等边三角形的性质可知,AC也是BD边上的中线,ABCD第9页/共20页动手操作,探索性质另证:作∠BCE=60°,交AB于E,连接CE,
则∠ACE=90°-60°=30°.在△ABC中,∵∠ACB=90°,∠A=30°,∴∠B=60°.在△BCE中,∵∠BCE=60°,∠B=60°,∴△BCE是等边三角形.∴
BC=BE=CE.EABC第10页/共20页动手操作,探索性质∴BC=BE=AE=AB.另证:在△ACE中,∵∠A=30°,∠ACE=30°,∴△AEC是等腰三角形.∴
CE=AE.∴
BC=BE=CE=AE.EABC第11页/共20页符号语言:∵在Rt△ABC中,∠C=90°,∠A=30°,动手操作,探索性质
在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.ABC∴
BC=AB.
第12页/共20页5课堂练习练习1如图,在△ABC中,∠C=90°,∠A=30°,AB=10,则BC的长为
.ABC第13页/共20页1课堂练习练习2
如图,在△ABC中,∠ACB=90°,CD是高,∠A=30°,AB=4.则BD=
.ABCD第14页/共20页思考图中BC、DE分别是哪个直角三角形的直角边?它们所对的锐角分别是多少度?性质运用例如图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4cm,∠A=30°,立柱BC、DE要多长?ABCDE第15页/共20页解:∵DE⊥AC,BC⊥AC,∠A=30°,∴
BC=AB,DE=AD.又AD=AB,∴
DE=AD=1.85(m)
.∴
BC=3.7(m).答:立柱BC的长是3.7m,DE的长是1.85m.性质运用例如图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4cm,∠A=30°,立柱BC、DE要多长?ABCDE第16页/共20页性质运用练习3
Rt△ABC中,∠C=90°,∠B=2∠A,∠B和∠A各是多少度?边AB与BC之间有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校保证书中的学生权益维护
- 企业宣传册印刷服务合同
- 供货与采购合同
- 摄影镜头采购协议
- 高效劳务分包合同设计
- 方案招标文件实践
- 地理环境与社会发展考核试卷
- 农村房屋施工合同范例
- 农村打横井合同范例
- 工程合作定金合同范例
- 2024年安徽省行政执法人员资格认证考试试题含答案
- 无脊椎动物课件-2024-2025学年(2024)人教版生物七年级上册
- 九年级化学上册(沪教版2024)新教材解读课件
- SH∕T 3097-2017 石油化工静电接地设计规范
- 长期金属材料购销合同
- 《诗经》与楚辞导读智慧树知到期末考试答案章节答案2024年海口经济学院
- 劳工及道德体系法律法规清单
- 大国崛起之中国高铁课件讲解
- “精康融合行动”方案(精神障碍康复)
- 病例汇报课件(完整版)
- Unit 3 Celebrations Topic Talk 教学设计 -2023-2024学年高中英语北师大版(2019)必修第一册
评论
0/150
提交评论