空间向量与立体几何3.2立体几何中的向量方法(第三课时) 课件_第1页
空间向量与立体几何3.2立体几何中的向量方法(第三课时) 课件_第2页
空间向量与立体几何3.2立体几何中的向量方法(第三课时) 课件_第3页
空间向量与立体几何3.2立体几何中的向量方法(第三课时) 课件_第4页
空间向量与立体几何3.2立体几何中的向量方法(第三课时) 课件_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第三章空间向量与立体几何3.2立体几何中的向量方法(第三课时)垂直关系:lm复习垂直关系:lABC垂直关系:αβ

例1、四面体ABCD的六条棱长相等,AB、CD的中点分别是M、N,求证MN⊥AB,MN⊥CD.

立几法证明1:

例1、四面体ABCD的六条棱长相等,AB、CD的中点分别是M、N,求证MN⊥AB,MN⊥CD.证明2:MN⊥AB,同理MN⊥CD.

例1、四面体ABCD的六条棱长相等,AB、CD的中点分别是M、N,求证MN⊥AB,MN⊥CD.证明3:如图所示建立空间直角坐标系,设AB=2.xyZxy

练习棱长为a的正方体中,E、F分别是棱AB,OA上的动点,且AF=BE,求证:

O’C’B’A’OABCEFZxy

解:如图所示建立空间直角坐标系,设AF=BE=b.ABCDPEFXYZ

证明1:如图所示建立空间直角坐标系,设DC=1.ABCDPEFXYZ

证明2:A1xD1B1ADBCC1yzEF是BB1,,CD中点,求证:D1F

练习正方体中,E、F分别平面ADE.

证明:设正方体棱长为1,为单位正交基底,建立如图所示坐标系D-xyz,所以A1xD1B1ADBCC1yzEF是BB1,,CD中点,求证:D1F

练习正方体中,E、F分别平面ADE.

证明2:,E是AA1中点,

例3、正方体平面C1BD.

证明:E求证:平面EBD设正方体棱长为2,建立如图所示坐标系平面C1BD的一个法向量是E(0,0,1)D(0,2,0)B(2,0,0)设平面EBD的一个法向量是平面C1BD.

平面EBD

证明2:E,E是AA1中点,

例3、正方体平面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论