版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
§2.3第7课时
方差与标准差
复习回顾(1)什么是总体特征数,平均数(2)平均数的计算方法能反映总体某种特征的量称为~数据的平均数或均值,一般记为若取值为的频率分别为则其平均数为.更多资源
本课目标(1)理解什么是样本数据的方差、标准差及其意义和作用;(2)学会计算数据的方差、标准差;(3)掌握通过合理抽样对总体的稳定性水平作出科学估计的思想.由图可以看出,乙样本的最小值100低于甲样本的最小值100,最大值145高于甲样本的最大值135,这说明乙种钢筋没有甲种钢筋的抗拉强度稳定.我们把一组数据的最大值与最小值的差称为极差(range)。由图可以看出,乙的极差较大,数据点较分散;甲的极差小,数据点较集中,这说明甲比乙稳定。运用极差对两组数据进行比较,操作简单方便,但如果两组数据的集中程度差异不大时,就不容易得出结论。考察样本数据的分散程度的大小,最常用的统计量是方差和标准差。一般地,设一组样本数据
其平均数为则为这个样本的方差.因为方差与原始数据的单位不同,且平方后可能夸大了离差的程度,我们将方差的算术平方根称为这组数据的标准差.标准差:
例1.甲、乙两种水稻试验品种连续5年的平均单位面积产量如下(单位:t/hm2),试根据这组数据估计哪一种水稻品种的产量比较稳定。品种第1年第2年第3年第4年第5年甲9.89.910.11010.2乙9.410.310.89.79.8解:甲品种的样本平均数为10,样本方差为[(9.8-10)2+(9.9-10)2+(10.1-10)2+(10-10)2+(10.2-10)2]÷5=0.02.乙品种的样本平均数也为10,样本方差为[(9.4-10)2+(10.3-10)2+(10.8-10)2+(9.7-10)2+(9.8-10)2]÷5=0.24因为0.24>0.02,所以,由这组数据可以认为甲种水稻的产量比较稳定。2.练习:(1)课本第68页练习第1、2、3、4题;(2)在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为9.5,0.016;回顾小结:1.用样本的数字特征估计总体的数字特征分两类:用样本平均数估计总体平均数。用样本方差、标准差估计总体方差、标准差。样本容量越大,估计就越精确。2.方差、标准差
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论