版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年贵州省铜仁地区普通高校对口单招高等数学一自考测试卷(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.A.sin(2x-1)+C
B.
C.-sin(2x-1)+C
D.
2.
3.
4.().A.A.单调增加且为凹B.单调增加且为凸C.单调减少且为凹D.单调减少且为凸
5.
6.设z=x2+y2,dz=()。
A.2ex2+y2(xdx+ydy)
B.2ex2+y2(zdy+ydx)
C.ex2+y2(xdx+ydy)
D.2ex2+y2(dx2+dy2)
7.
8.设f(xo)=0,f(xo)<0,则下列结论中必定正确的是
A.xo为f(x)的极大值点
B.xo为f(x)的极小值点
C.xo不为f(x)的极值点
D.xo可能不为f(x)的极值点
9.
10.下列函数在指定区间上满足罗尔中值定理条件的是()。A.
B.
C.
D.
11.曲线Y=x-3在点(1,1)处的切线的斜率为().
A.-1
B.-2
C.-3
D.-4
12.曲线y=x-ex在点(0,-1)处切线的斜率k=A.A.2B.1C.0D.-1
13.设函数f(x)=2sinx,则f'(x)等于().A.A.2sinxB.2cosxC.-2sinxD.-2cosx.
14.当x→0时,3x是x的().
A.高阶无穷小量B.等价无穷小量C.同阶无穷小量,但不是等价无穷小量D.低阶无穷小量
15.
16.下列关于动载荷的叙述不正确的一项是()。
A.动载荷和静载荷的本质区别是前者构件内各点的加速度必须考虑,而后者可忽略不计
B.匀速直线运动时的动荷因数为
C.自由落体冲击时的动荷因数为
D.增大静变形是减小冲击载荷的主要途径
17.若f(x)为[a,b]上的连续函数,()。A.小于0B.大于0C.等于0D.不确定
18.()。A.-2B.-1C.0D.2
19.A.a=-9,b=14B.a=1,b=-6C.a=-2,b=0D.a=12,b=-5
20.
A.
B.
C.
D.
二、填空题(20题)21.设y=cosx,则y'=______
22.
23.
24.
25.级数的收敛区间为______.
26.
27.
28.微分方程y'=2的通解为__________。
29.通解为C1e-x+C2e-2x的二阶常系数线性齐次微分方程是____.
30.过M0(1,-1,2)且垂直于平面2x-y+3z-1=0的直线方程为.
31.
32.微分方程y"+y'=0的通解为______.
33.
34.
35.
36.
37.
38.
39.
40.
三、计算题(20题)41.求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.
42.设抛物线Y=1-x2与x轴的交点为A、B,在抛物线与x轴所围成的平面区域内,以线段AB为下底作内接等腰梯形ABCD(如图2—1所示).设梯形上底CD长为2x,面积为
S(x).
(1)写出S(x)的表达式;
(2)求S(x)的最大值.
43.研究级数的收敛性(即何时绝对收敛,何时条件收敛,何时发散,其中常数a>0.
44.
45.求微分方程y"-4y'+4y=e-2x的通解.
46.
47.
48.求曲线在点(1,3)处的切线方程.
49.求函数一的单调区间、极值及其曲线的凹凸区间和拐点.
50.当x一0时f(x)与sin2x是等价无穷小量,则
51.设平面薄板所占Oxy平面上的区域D为1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求该薄板的质量m.
52.
53.求微分方程的通解.
54.
55.将f(x)=e-2X展开为x的幂级数.
56.证明:
57.
58.求函数f(x)=x3-3x+1的单调区间和极值.
59.
60.已知某商品市场需求规律为Q=100e-0.25p,当p=10时,若价格上涨1%,需求量增(减)百分之几?
四、解答题(10题)61.
62.求由曲线y2=(x-1)3和直线x=2所围成的图形绕x轴旋转所得的旋转体的体积.
63.
64.
65.
66.设z=z(x,y)由x2+2y2+3z2+yz=1确定,求
67.
68.
69.设函数f(x)=ax3+bx2+cx+d,问常数a,b,c满足什么关系时,f(x)分别没有极值、可能有一个极值、可能有两个极值?
70.
五、高等数学(0题)71.设
则∫f(x)dx等于()。
A.2x+c
B.1nx+c
C.
D.
六、解答题(0题)72.求函数y=xex的极小值点与极小值。
参考答案
1.B本题考查的知识点为不定积分换元积分法。
因此选B。
2.D解析:
3.D
4.B本题考查的知识点为利用一阶导数符号判定函数的单调性和利用二阶导数符号判定曲线的凹凸性.
5.A
6.A∵z=ex+y∴z"=ex2+y22x;zy"=ex2+y22y∴dz=ex2+y22xdx+ex2+y22ydy
7.A解析:
8.A
9.A
10.C
11.C点(1,1)在曲线.由导数的几何意义可知,所求切线的斜率为-3,因此选C.
12.C
13.B本题考查的知识点为导数的运算.
f(x)=2sinx,
f'(x)=2(sinx)'=2cosx,
可知应选B.
14.C本题考查的知识点为无穷小量阶的比较.
应依定义考察
由此可知,当x→0时,3x是x的同阶无穷小量,但不是等价无穷小量,故知应选C.
本题应明确的是:考察当x→x0时无穷小量β与无穷小量α的阶的关系时,要判定极限
这里是以α为“基本量”,考生要特别注意此点,才能避免错误.
15.D解析:
16.C
17.C
18.A
19.B
20.D本题考查的知识点为导数运算.
因此选D.
21.-sinx
22.(02)(0,2)解析:
23.
24.
25.(-1,1)本题考查的知识点为求幂级数的收敛区间.
所给级数为不缺项情形.
可知收敛半径,因此收敛区间为
(-1,1).
注:《纲》中指出,收敛区间为(-R,R),不包括端点.
本题一些考生填1,这是误将收敛区间看作收敛半径,多数是由于考试时过于紧张而导致的错误.
26.1
27.解析:
28.y=2x+C
29.
30.
本题考查的知识点为直线方程的求解.
由于所求直线与平面垂直,因此直线的方向向量s可取为已知平面的法向量n=(2,-1,3).
由直线的点向式方程可知所求直线方程为
31.
32.y=C1+C2e-x,其中C1,C2为任意常数本题考查的知识点为二阶线性常系数齐次微分方程的求解.
二阶线性常系数齐次微分方程求解的一般步骤为:先写出特征方程,求出特征根,再写出方程的通解.
微分方程为y"+y'=0.
特征方程为r3+r=0.
特征根r1=0.r2=-1.
因此所给微分方程的通解为
y=C1+C2e-x,
其牛C1,C2为任意常数.
33.
34.
35.
36.2xy(x+y)+3
37.y=-e-x+C
38.
39.5.
本题考查的知识点为二元函数的偏导数.
解法1
解法2
40.
41.
42.
43.
44.
45.解:原方程对应的齐次方程为y"-4y'+4y=0,
46.
47.
48.曲线方程为,点(1,3)在曲线上.
因此所求曲线方程为或写为2x+y-5=0.
如果函数y=f(x)在点x0处的导数f′(x0)存在,则表明曲线y=f(x)在点
(x0,fx0))处存在切线,且切线的斜率为f′(x0).切线方程为
49.
列表:
说明
50.由等价无穷小量的定义可知
51.由二重积分物理意义知
52.
53.
54.
55.
56.
57.由一阶线性微分方程通解公式有
58.函数的定义域为
注意
59.
则
60.需求规律为Q=100ep-2.25p
∴当P=10时价格上涨1%需求量减少2.5%需求规律为Q=100ep-2.25p,
∴当P=10时,价格上涨1%需求量减少2.5%
61.
本题考查的知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 临沂科技职业学院《人力资源管理前沿专题》2023-2024学年第一学期期末试卷
- 江苏工程职业技术学院《生命科学基础》2023-2024学年第一学期期末试卷
- 华东政法大学《无机材料综合实验II》2023-2024学年第一学期期末试卷
- 湖北黄冈应急管理职业技术学院《网络存储技术与实践》2023-2024学年第一学期期末试卷
- 珠海科技学院《临床医学概论(内科学)》2023-2024学年第一学期期末试卷
- 浙江同济科技职业学院《电气传动与控制》2023-2024学年第一学期期末试卷
- 中南财经政法大学《聚合过程与原理》2023-2024学年第一学期期末试卷
- 长沙理工大学城南学院《技法理论》2023-2024学年第一学期期末试卷
- 云南交通职业技术学院《医药市场调研与预测》2023-2024学年第一学期期末试卷
- 新一代信息技术产业布局
- 洞悉现状 明确方向-初三上期末家长会
- 质控护理管理制度内容
- 幼儿园幼教集团2025学年第二学期工作计划
- 2025版高考物理复习知识清单
- 2024年考研管理类综合能力(199)真题及解析完整版
- 除数是两位数的除法练习题(84道)
- 六年级下册【默写表】(牛津上海版、深圳版)(英译汉)
- 北京外企劳动合同范例
- 《护患沟通》课件
- 2JaneEyre简·爱-英文版-英文版
- 电子海图模拟系统需求说明
评论
0/150
提交评论