版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年甘肃省武威市成考专升本高等数学一自考模拟考试(含答案)学校:________班级:________姓名:________考号:________
一、单选题(50题)1.
2.
3.
4.微分方程(y)2=x的阶数为()A.1B.2C.3D.4
5.
6.已知函数f(x)的定义域是[一1,1],则f(x一1)的定义域为()。
A.[一1,1]B.[0,2]C.[0,1]D.[1,2]
7.
8.A.A.凹B.凸C.凹凸性不可确定D.单调减少
9.
10.
11.对于微分方程y"-2y'+y=xex,利用待定系数法求其特解y*时,下列特解设法正确的是()。A.y*=(Ax+B)ex
B.y*=x(Ax+B)ex
C.y*=Ax3ex
D.y*=x2(Ax+B)ex
12.平衡积分卡控制是()首创的。
A.戴明B.施乐公司C.卡普兰和诺顿D.国际标准化组织
13.
A.仅有水平渐近线
B.既有水平渐近线,又有铅直渐近线
C.仅有铅直渐近线
D.既无水平渐近线,又无铅直渐近线
14.A.A.0B.1C.2D.任意值15.()。A.2πB.πC.π/2D.π/416.设f(x)为区间[a,b]上的连续函数,则曲线y=f(x)与直线x=a,x=b,y=0所围成的封闭图形的面积为()。A.
B.
C..
D.不能确定
17.设函数f(x)=2lnx+ex,则f(2)等于()。
A.eB.1C.1+e2
D.ln218.
19.
20.下列命题中正确的为
A.若x0为f(x)的极值点,则必有f'(x0)=0
B.若f'(x)=0,则点x0必为f(x)的极值点
C.若f'(x0)≠0,则点x0必定不为f(x)的极值点
D.若f(x)在点x0处可导,且点x0为f(x)的极值点,则必有f'(x0)=0
21.
22.
23.
24.
A.
B.
C.
D.
25.设y=5x,则y'等于().
A.A.
B.
C.
D.
26.用待定系数法求微分方程y"-y=xex的一个特解时,特解的形式是(式中α、b是常数)。A.(αx2+bx)ex
B.(αx2+b)ex
C.αx2ex
D.(αx+b)ex
27.A.A.
B.x2
C.2x
D.2
28.A.绝对收敛B.条件收敛C.发散D.收敛性与k有关29.f(x)在x=0的某邻域内一阶导数连续且则()。A.x=0不是f(x)的极值点B.x=0是f(x)的极大值点C.x=0是f(x)的极小值点D.x=0是f(x)的拐点30.设y=sinx,则y'|x=0等于().A.1B.0C.-1D.-2
31.
32.已知作用在简支梁上的力F与力偶矩M=Fl,不计杆件自重和接触处摩擦,则以下关于固定铰链支座A的约束反力表述正确的是()。
A.图(a)与图(b)相同B.图(b)与图(c)相同C.三者都相同D.三者都不相同33.
34.设y=2x3,则dy=()
A.2x2dx
B.6x2dx
C.3x2dx
D.x2dx
35.
36.已知y=ksin2x的一个原函数为y=cos2x,则k等于()。A.2B.1C.-1D.-2
37.
38.()。A.过原点且平行于X轴B.不过原点但平行于X轴C.过原点且垂直于X轴D.不过原点但垂直于X轴39.A.A.
B.
C.
D.
40.当x→0时,与x等价的无穷小量是()
A.
B.ln(1+x)
C.
D.x2(x+1)
41.当x→0时,2x+x2是x的A.A.等价无穷小B.较低阶无穷小C.较高阶无穷小D.同阶但不等价的无穷小
42.人们对某一目标的重视程度与评价高低,即人们在主观上认为这种报酬的价值大小叫做()
A.需要B.期望值C.动机D.效价
43.
44.
45.()A.A.(-∞,-3)和(3,+∞)
B.(-3,3)
C.(-∞,O)和(0,+∞)
D.(-3,0)和(0,3)
46.
47.
48.过点(1,0,0),(0,1,0),(0,0,1)的平面方程为().
A.x+y+z=1
B.2x+y+z=1
C.x+2y+z=1
D.x+y+2z=1
49.
50.设x2是f(x)的一个原函数,则f(x)=A.A.2x
B.x3
C.(1/3)x3+C
D.3x3+C
二、填空题(20题)51.
52.
53.
54.
55.
56.
57.
58.微分方程dy+xdx=0的通解为y=__________.
59.
60.设函数z=x2ey,则全微分dz=______.
61.过点M0(2,0,-1)且平行于的直线方程为______.62.63.设区域D由y轴,y=x,y=1所围成,则.
64.
65.
66.
67.
68.
69.
70.三、计算题(20题)71.72.求曲线在点(1,3)处的切线方程.73.
74.
75.已知某商品市场需求规律为Q=100e-0.25p,当p=10时,若价格上涨1%,需求量增(减)百分之几?
76.求函数f(x)=x3-3x+1的单调区间和极值.77.设抛物线Y=1-x2与x轴的交点为A、B,在抛物线与x轴所围成的平面区域内,以线段AB为下底作内接等腰梯形ABCD(如图2—1所示).设梯形上底CD长为2x,面积为
S(x).
(1)写出S(x)的表达式;
(2)求S(x)的最大值.
78.设平面薄板所占Oxy平面上的区域D为1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求该薄板的质量m.79.
80.当x一0时f(x)与sin2x是等价无穷小量,则81.求函数一的单调区间、极值及其曲线的凹凸区间和拐点.82.求微分方程的通解.
83.
84.研究级数的收敛性(即何时绝对收敛,何时条件收敛,何时发散,其中常数a>0.85.求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.86.证明:
87.
88.将f(x)=e-2X展开为x的幂级数.89.
90.求微分方程y"-4y'+4y=e-2x的通解.
四、解答题(10题)91.
92.
93.
94.
95.求微分方程的通解。96.设
97.(本题满分10分)
98.
99.
100.五、高等数学(0题)101.
则b__________.
六、解答题(0题)102.求由曲线y2=(x-1)3和直线x=2所围成的图形绕x轴旋转所得的旋转体的体积.
参考答案
1.A解析:
2.C解析:
3.C解析:
4.A
5.C
6.B∵一1≤x一1≤1∴0≤x≤2。
7.A
8.A本题考查的知识点为利用二阶导数符号判定曲线的凹凸性.
9.D解析:
10.B解析:
11.D特征方程为r2-2r+1=0,特征根为r=1(二重根),f(x)=xex,α=1为特征根,因此原方程特解y*=x2(Ax+B)ex,因此选D。
12.C
13.A
14.B
15.B
16.B本题考查的知识点为定积分的几何意义。由定积分的几何意义可知应选B。常见的错误是选C。如果画个草图,则可以避免这类错误。
17.C
18.B
19.A解析:
20.D解析:由极值的必要条件知D正确。
y=|x|在x=0处取得极值,但不可导,知A与C不正确。
y=x3在x=0处导数为0,但x0=0不为它的极值点,可知B不正确。因此选D。
21.B
22.B解析:
23.D解析:
24.C
25.C本题考查的知识点为基本初等函数的求导.
y=5x,y'=5xln5,因此应选C.
26.Ay"-y=0的特征方程是r2-1=0,特征根为r1=1,r2=-1
y"-y=xex中自由项f(x)=xex,α=1是特征单根,应设y*=x(ax+b)ex=(αx2+bx)ex。
所以选A。
27.D本题考查的知识点为原函数的概念.
可知应选D.
28.A本题考查的知识点为无穷级数的收敛性。
29.A∵分母极限为0,分子极限也为0;(否则极限不存在)用罗必达法则同理即f"(0)一1≠0;x=0不是驻点∵可导函数的极值点必是驻点∴选A。
30.A由于
可知应选A.
31.C解析:
32.D
33.A
34.B
35.C
36.D本题考查的知识点为可变限积分求导。由原函数的定义可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。
37.C
38.C将原点(0,0,O)代入直线方程成等式,可知直线过原点(或由
39.C本题考查的知识点为微分运算.
因此选C.
40.B?
41.D
42.D解析:效价是指个人对达到某种预期成果的偏爱程度,或某种预期成果可能给行为者带来的满足程度。
43.B
44.D
45.D
46.C
47.A
48.A设所求平面方程为.由于点(1,0,0),(0,1,0),(0,0,1)都在平面上,将它们的坐标分别代入所设平面方程,可得方程组
故选A.
49.C
50.A由于x2为f(x)的一个原函数,由原函数的定义可知f(x)=(x2)'=2x,故选A。
51.
52.
本题考查的知识点为可分离变量方程的求解.
可分离变量方程求解的一般方法为:
(1)变量分离;
(2)两端积分.
53.54.本题考查的知识点为用洛必达法则求未定型极限.
55.x=2x=2解析:
56.f(x)+Cf(x)+C解析:
57.
58.
59.
60.dz=2xeydx+x2eydy
61.
62.63.1/2本题考查的知识点为计算二重积分.其积分区域如图1-2阴影区域所示.
可利用二重积分的几何意义或将二重积分化为二次积分解之.
解法1由二重积分的几何意义可知表示积分区域D的面积,而区域D为等腰直角三角形,面积为1/2,因此.
解法2化为先对y积分,后对x积分的二次积分.
作平行于y轴的直线与区域D相交,沿y轴正向看,入口曲线为y=x,作为积分下限;出口曲线为y=1,作为积分上限,因此
x≤y≤1.
区域D在x轴上的投影最小值为x=0,最大值为x=1,因此
0≤x≤1.
可得知
解法3化为先对x积分,后对Y积分的二次积分.
作平行于x轴的直线与区域D相交,沿x轴正向看,入口曲线为x=0,作为积分下限;出口曲线为x=y,作为积分上限,因此
0≤x≤y.
区域D在y轴上投影的最小值为y=0,最大值为y=1,因此
0≤y≤1.
可得知
64.
65.1/21/2解析:
66.0本题考查了利用极坐标求二重积分的知识点.
67.(e-1)268.
69.70.本题考查的知识点为二重积分的直角坐标与极坐标转化问题。
71.
72.曲线方程为,点(1,3)在曲线上.
因此所求曲线方程为或写为2x+y-5=0.
如果函数y=f(x)在点x0处的导数f′(x0)存在,则表明曲线y=f(x)在点
(x0,fx0))处存在切线,且切线的斜率为f′(x0).切线方程为
73.由一阶线性微分方程通解公式有
74.
75.需求规律为Q=100ep-2.25p
∴当P=10时价格上涨1%需求量减少2.5%需求规律为Q=100ep-2.25p,
∴当P=10时,价格上涨1%需求量减少2.5%76.函数的定义域为
注意
77.
78.由二重积分物理意义知
79.
则
80.由等价无穷小量的定义可知
81.
列表:
说明
82.
83.
84.
85.
86.
87.
88.
89.
90.解:原方程对应的齐次方程为y"-4y'+4y=0,
91.
92.
93.
94.
95.对应的齐次方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学校内活动安全预案样本(4篇)
- 2021年10月贵州能投产业集团有限公司关于公开引进总经理助理等职务的冲刺题(一)
- 爆炸物品库房值班员岗位责任制(3篇)
- 2024年领导年会简短发言稿(4篇)
- 2024年地皮转让协议参考样本(3篇)
- 灵新煤矿职业病危害告知制度模版(3篇)
- 2024年综采队支架安装、回撤工安全生产责任制(2篇)
- 2024年打扫图书馆心得体会(2篇)
- 煤矿突出预兆及应急处理预案范文(2篇)
- 击剑培训合同
- 新生儿呼吸窘迫综合征课件
- 知道智慧网课《检验仪器原理与性能评价》章节测试答案
- 2024年新修订公司法知识竞赛题库及答案
- 部编版九年级语文上、下册古诗词练习及答案
- 2024年《考评员》应知应会考试题库(附答案)
- 2024新版同股不同权协议书完整版
- ISO14001:2015环境安全监测与测量控制程序
- Abominable《雪人奇缘》电影完整中英文对照剧本
- 商会专职秘书长聘用合同
- 工程建设监理收费标准(发改价格【2007】670号)
- 交付管理体系
评论
0/150
提交评论