上海建承中学2021-2022学年高二数学理期末试卷含解析_第1页
上海建承中学2021-2022学年高二数学理期末试卷含解析_第2页
上海建承中学2021-2022学年高二数学理期末试卷含解析_第3页
上海建承中学2021-2022学年高二数学理期末试卷含解析_第4页
上海建承中学2021-2022学年高二数学理期末试卷含解析_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海建承中学2021-2022学年高二数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知抛物线()A.

B.

C.

D.参考答案:D2.曲线y=x3﹣2在点(1,﹣)处切线的斜率为()A. B.1 C.﹣1 D.参考答案:B【考点】利用导数研究曲线上某点切线方程.【分析】求曲线在某点处的切线的斜率,就是求曲线在该点处的导数值,先求导函数,然后将点的坐标代入即可求得结果.【解答】解:y=x3﹣2的导数为:y′=x2,将点(1,﹣)的横坐标代入,即可得斜率为:k=1.故选:B.3.函数的零点所在的一个区间是(

)ks5uA、(-2,-1)

B、(-1,0)C、(0,1)D、(1,2)参考答案:B略4.若圆x2+y2﹣4x﹣4y﹣10=0上至少有三个不同的点,到直线l:y=x+b的距离为2,则b取值范围为()A.(﹣2,2) B.[﹣2,2] C.[0,2] D.[﹣2,2)参考答案:B【考点】直线与圆的位置关系.【分析】先求出圆心和半径,比较半径和2,要求圆上至少有三个不同的点到直线l:y=x+b的距离为2,则圆心到直线的距离应小于等于,用圆心到直线的距离公式,可求得结果.【解答】解:圆x2+y2﹣4x﹣4y﹣10=0整理为(x﹣2)2+(y﹣2)2=18,∴圆心坐标为(2,2),半径为3,要求圆上至少有三个不同的点到直线l:y=x+b的距离为2则圆心到直线的距离d=≤,∴﹣2≤c≤2故选:B.【点评】本题考查直线和圆的位置关系,圆心到直线的距离等知识,是中档题.5.已知等差数列{an},且是方程的两根,Sn是数列{an}的前n项和,则的值为(

)A.110 B.66 C.44 D.33参考答案:B【分析】由韦达定理可得:,再由等差数列前项和公式及等差数列的性质即可计算得解。【详解】因为是方程的两根,所以.所以故选:B【点睛】本题主要考查了韦达定理的应用,还考查了等差数列前项和公式及等差数列的性质,考查转化能力及计算能力,属于中档题。6.已知a,b为两个单位向量,那么(

)

A.a=b

B.若a∥b,则a=b

C.a·b=1

D.a2=b2

参考答案:D7.已知方程和,其中,,它们所表示的曲线可能是下列图象中的(▲)

A.

B.

C.

D.

参考答案:B略8.设变量x、y满足约束条件,则目标函数z=3x+y的最小值为()A.2 B.4 C.6 D.12参考答案:B【考点】7C:简单线性规划.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最小值.【解答】解:作出不等式对应的平面区域如图,由z=3x+y,得y=﹣3x+z,平移直线y=﹣3x+z,由图象可知当直线y=﹣3x+z,经过点A时,直线y=﹣3x+z的截距最小,此时z最小.由,解得,即A(1,1),此时z的最小值为z=1×3+1=4,故选:B9.下列各函数中,最小值为2的是(

)A. B.,C. D.参考答案:D【分析】对于选项A中的x来说,因为x不等于0,所以x大于0小于0不确定,所以最小值不一定为2;对于选项B和C中的函数来说,sinx大于0,而也大于0,但是基本不等式不满足取等号的条件;从而可得结果.【详解】对于A:不能保证x>0,

对于B:不能保证sinx=,

对于C:不能保证,

对于D:,当时,最小值为2.

故选D【点睛】利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用或时等号能否同时成立).10.下列四个命题:1

,”是全称命题;2

命题“,”的否定是“,使”;3

若,则;

4

若为假命题,则、均为假命题.其中真命题的序号是(

)A.①② B.①④ C.②④ D.①②③④参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.设[x]表示不超过x的最大整数,如[1.5]=1,[﹣1.5]=﹣2.若函数(a>0,a≠1),则g(x)=[f(x)﹣]+[f(﹣x)﹣]的值域为.参考答案:{0,﹣1}【考点】函数的值域.【分析】先求出函数f(x)的值域,然后求出[f(x)﹣]的值,再求出f(﹣x)的值域,然后求出[f(﹣x)﹣]的值,最后求出g(x)=[f(x)﹣]+[f(﹣x)﹣]的值域即可.【解答】解:=∈(0,1)∴f(x)﹣∈(﹣,)[f(x)﹣]=0或﹣1∵f(﹣x)=∈(0,1)∴f(﹣x)﹣∈(,)则[f(﹣x)﹣]=﹣1或0∴g(x)=[f(x)﹣]+[f(﹣x)﹣]的值域为{0,﹣1}故答案为:{0,﹣1}12.(5分)设n为奇数,则除以9的余数为.参考答案:由于n为奇数,=(1+7)n﹣1=(9﹣1)n﹣1=+++…++﹣1,显然,除了最后2项外,其余的各项都能被9整除,故此式除以9的余数即最后2项除以9的余数.而最后2项的和为﹣2,它除以9的余数为7,故答案为7.所给的式子即(9﹣1)n﹣1的展开式,除了最后2项外,其余的各项都能被9整除,故此式除以9的余数即最后2项除以9的余数.13.对于椭圆和双曲线有下列命题:①椭圆的焦点恰好是双曲线的顶点;

②双曲线的焦点恰好是椭圆的顶点;③双曲线与椭圆共焦点;④椭圆与双曲线有两个顶点相同.其中正确命题的序号是

。参考答案:略14.已知抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切,则p的值为

.参考答案:2

略15.设变量满足约束条件:.则目标函数的最小值为__________.参考答案:716.在区间[0,2]上任取两个实数x,y,则x2+y2≤1的概率为.参考答案:【考点】几何概型.【分析】该题涉及两个变量,故是与面积有关的几何概型,分别表示出满足条件的面积和整个区域的面积,最后利用概率公式解之即可.【解答】解:由题意可得,区间[0,2]上任取两个实数x,y的区域为边长为2的正方形,面积为4.∵x2+y2≤1的区域是圆的面积的,其面积S=,∴在区间[0,2]上任取两个实数x,y,则x2+y2≤1的概率为.故答案为.17.命题“”的否定是

.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知开口向上的二次函数f(x),对任意,恒有成立,设向量a=,b=(1,2)。求不等式f(a·b)<f(5)的解集。参考答案:由题意知f(x)在上是增函数,

a·b=

f(a·b)<f(5)

a·b<5(*)①当时,不等式(*)可化为,此时x无解;②当时,不等式(*)可化为此时;③当时,不等式(*)可化为,此时。综上可知:不等式f(a·b)<f(5)的解集为。19.一般地,若f(x)的定义域为[a,b],值域为[ka,kb],(a<b),则称[a,b]为函数f(x)的“k倍保值区间”.特别地,若f(x)的定义域为[a,b],值域也为[a,b],(a<b),则称[a,b]为函数f(x)的“保值区间”.(1)若[1,b]为g(x)=的保值区间,求常数b的值;(2)问是否存在常数a,b(a>﹣2)使函数h(x)=的保值区间为[a,b]?若存在,求出a,b的值,否则,请说明理由.(3)求函数p(x)=x2+的2倍保值区间[a,b].参考答案:【考点】函数与方程的综合运用.【专题】新定义;分类讨论;分析法;函数的性质及应用.【分析】(1)求得g(x)的对称轴为x=1,可得g(x)在[1,b]上单调递增,即有b的方程,解方程可得b;(2)假设存在这样的a,b,由于a>﹣2,则h(x)在[a,b]上单调递减,可得a,b的关系式,解方程即可判断是否存在;(3)讨论①当a<b<0时,②当0<a<b时,③当a<0<b时,运用单调性,结合二次方程解方程可得a,b,进而得到所求区间.【解答】解:(1)g(x)=的对称轴为x=1,则g(x)在[1,b]上单调递增,可得?b=3或b=1,由于b>1,则b=3;(2)假设存在这样的a,b,由于a>﹣2,则h(x)在[a,b]上单调递减,则即有?(a+2)b=(b+2)a?a=b与a<b矛盾.故不存在这样的a,b;(3)①当a<b<0时,p(x)在[a,b]上单调递增,

则即为则a,b0为方程的两个根.由于ab=﹣13<0(舍);②当0<a<b时,p(x)在[a,b]上单调递减,则即为,两式相减(舍);③当a<0<b时,,若(舍),若p(x)min=p(a)=﹣a2+=2a,解得a=﹣﹣2或﹣2(舍去),又,则,综上所述,或.即有2倍保值区间[a,b]为[1,3]或[﹣﹣2,].【点评】本题考查新定义的理解和运用,考查函数的性质和运用,主要考查单调性的运用,考查分类讨论的思想方法,考查运算能力,属于中档题.20.

实数m什么值时,复数是(I)实数;(II)纯虚数.参考答案:(Ⅰ)复数z为实数满足,即,解得,或--------------------------------------------4分(Ⅱ)复数z为纯虚数满足,

解得,或---------------------------8分

略21.在等差数列{an}中,a1+a3+a5=﹣12,且a1a3a5=80,求数列{an}的通项公式.参考答案:【考点】等差数列的性质.【专题】方程思想;数学模型法;等差数列与等比数列.【分析】利用等差数列的通项公式即可得出.【解答】解:设等差数列{an}的公差为d,∵a1+a3+a5=﹣12,且a1a3a5=80,∴,解得a3=﹣4,d=±3.∴an=a3+(n﹣3)d=3n﹣13或﹣3n+5.因此an=3n﹣13或﹣3n+5.【点评】本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于中档题.22.如图,椭圆过点,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论