版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
会计学1131柱体椎体台体的表面积与体积优秀课件
正方体和长方体是由平面图形围成的多面体,它们表面积就是各个面的面积的和,也就是展开图的面积。543表面积为:4×3×4+4×5×2=88求多面体表面积的方法:展成平面图形,求面积。第1页/共61页1.3.1
柱体、锥体、台体的表面积与体积第2页/共61页正六棱柱的侧面展开图是什么?如何计算它的表面积?棱柱的展开图正棱柱的侧面展开图ha第3页/共61页棱锥的展开图是三角形。第4页/共61页同理,棱台的展开图呢?棱台的展开图是梯形。第5页/共61页棱柱、棱锥、棱台都是由多个平面图形围成的几何体,它们的侧面展开图还是平面图形,计算它们的表面积就是计算它的各个侧面面积和底面面积之和。第6页/共61页
已知棱长为a,各面均为等边三角形的四面体S-ABC,求它的表面积。DBCAS分析:四面体的展开图是由四个全等的正三角形组成。因为BC=a,所以:因此,四面体S-ABC
的表面积:解:先求ΔSBC的面积,过S作SD⊥BC,交BC于点D。
例一第7页/共61页圆柱的表面积圆柱的侧面展开图是矩形第8页/共61页圆柱的表面积圆柱的侧面展开图是矩形第9页/共61页圆锥的侧面展开图是扇形圆锥的表面积第10页/共61页圆锥的侧面展开图是扇形圆锥的表面积第11页/共61页参照圆柱和圆锥的侧面展开图,试想象圆台的侧面展开图是什么?圆台的表面积第12页/共61页圆台的侧面展开图是扇环OO'参照圆柱和圆锥的侧面展开图,试想象圆台的侧面展开图是什么?圆台的表面积第13页/共61页圆台的侧面展开图是扇环OO'参照圆柱和圆锥的侧面展开图,试想象圆台的侧面展开图是什么?圆台的表面积播放动画第14页/共61页一个圆台形花盆盆口直径20cm,盆底直径为15cm,底部渗水圆孔直径为1.5cm,盆壁长15cm。那么花盆的表面积约是多少平方厘米(π取3.14,结果精确到1cm2)?解:由圆台的表面积公式得花盆的表面积:答:花盆的表面积约是999.例二第15页/共61页r'=r上底扩大r'=0上底缩小探究
圆柱、圆锥、圆台三者的表面积公式之间有什么关系?第16页/共61页2.柱体、椎体、台体的体积我们已经学习了特殊的棱柱——正方体、长方体以及圆柱的体积公式,它们的体积公式可以统一为:(S为底面面积,h为高)一般柱体体积也是:其中S为底面面积,h为棱柱的高。一般柱体第17页/共61页思考3:关于体积有如下几个原理:(1)相同的几何体的体积相等;(2)一个几何体的体积等于它的各部分体积之和;(3)等底面积等高的两个同类几何体的体积相等;(4)体积相等的两个几何体叫做等积体.
第18页/共61页将一个三棱柱按如图所示分解成三个三棱锥,那么这三个三棱锥的体积有什么关系?它们与三棱柱的体积有什么关系?
123123第19页/共61页圆锥的体积公式:(其中S为底面面积,h为高)棱锥的体积公式:(其中S为底面面积,h为高)圆锥体积等于同底等高的圆柱的体积的棱锥体积等于同底等高的棱柱的体积的第20页/共61页思考4:推广到一般的棱锥和圆锥,你猜想锥体的体积公式是什么?高h底面积S
它是同底同高的柱体的体积的。第21页/共61页
由此可知,棱柱与圆柱的体积公式类似,都是底面面积乘高;棱锥与圆锥的体积公式类似,都是等于底面面积乘高的。第22页/共61页探究如何求台体的体积?
由于圆台(棱台)是由圆锥(棱锥)截成的,因此用两个锥体的体积差。得到圆台(棱台)的体积公式:
其中S,S‘分别为上、下底面面积,h为圆台(棱台)的高。上底面积S′
高h下底面积S
pCBAD第23页/共61页柱体、锥体与台体的体积思考:你能发现三者之间的关系吗?第24页/共61页上底扩大上底缩小
圆柱、圆锥、圆台三者的体积公式之间有什么关系?第25页/共61页思考6:在台体的体积公式中,若S′=S,S′=0,则公式分别变形为什么?S′=SS′=0第26页/共61页有一堆规格相同的铁制(铁的密是)六角螺帽共重5.8kg,已知底面是正六边形,边长为12mm,内孔直径为10mm,高为10mm,问这堆螺帽大约有多少个(π取3.14)?例三第27页/共61页
解:六角螺帽的体积是六棱柱的体积与圆柱体积之差,即:所以螺帽的个数为(个)答:这堆螺帽大约有252个.第28页/共61页球的表面积和体积第29页/共61页
与定点的距离小于或等于定长的点的集合,叫做球体,简称球讲授新课1、球的概念定点叫做球的球心定长叫做球的半径与定点的距离等于定长的点的集合,叫做球面O半径球心直径第30页/共61页2、球的表面积o思考:经过球心的截面圆面积是什么?它与球的表面积有什么关系?定理:半径为R的球的表面积是球的表面积等于球的大圆面积的4倍第31页/共61页3、球的体积定理:半径为R的球的体积是第32页/共61页例2、如图,圆柱的底面直径与高都等于球的直径,求证:(1)球的表面积等于圆柱的侧面积.(2)球的表面积等于圆柱全面积的三分之二.O证明:R(1)设球的半径为R,得:则圆柱的底面半径为R,高为2R.(2)222624RRRSppp=+=圆柱全Q第33页/共61页理论迁移
如图,圆柱的底面直径与高都等于球的直径,求证:(1)球的体积等于圆柱体积的;(2)球的表面积等于圆柱的侧面积.第34页/共61页4.若两球体积之比是1:2,则其表面积之比是______.练习二1.若球的表面积变为原来的2倍,则半径变为原来的___倍.2.若球半径变为原来的2倍,则表面积变为原来的___倍.3.若两球表面积之比为1:2,则其体积之比是______.课堂练习第35页/共61页例3.钢球直径是5cm,求它的体积和表面积.第36页/共61页(变式1)一种空心钢球的质量是142g,外径是5cm,求它的内径.(钢的密度是7.9g/cm2)解:设空心钢球的内径为2xcm,则钢球的质量是答:空心钢球的内径约为4.5cm.“内径”是指内壁的直径,“外径”是指外壁直径。第37页/共61页(变式2)把直径为5cm钢球放入一个正方体的有盖纸盒中,至少要用多少纸?解:当球内切于正方体时用料最省时此时棱长=直径=5cm答:至少要用纸150cm2两个几何体相切:一个几何体的各个面与另一个几何体的各面相切.分析:用料最省时,球与正方体有什么位置关系?球内切于正方体第38页/共61页例4.如图,正方体的棱长为a,它的各个顶点都在球的球面上,求球的表面积和体积。分析:正方体内接于球,则由球和正方体都是中心对称图形可知,它们中心重合,则正方体体对角线与球的直径相等。两个几何体相接:一个几何体的所有顶点都在另一个几何体的表面上。ABCDD1C1B1A1O323334222322343)2(aRVaRSaRaRpppp====\=\=\\且对角线长
球的直径等于正方体的体正方体内接于球解:Q第39页/共61页(变式)球的内接长方体的长、宽、高分别为3、2、,求此球体的表面积和体积。分析:长方体内接于球,则由球和长方体都是中心对称图形可知,它们中心重合,则长方体体对角线与球的直径相等。pppp33233422222164216)3(23)2(====\=\=++=\\RVRSRR且体对角线长球的直径等于长方体的长方体内接于球解:Q第40页/共61页OABC例3已知过球面上三点A、B、C的截面到球心O的距离等于球半径的一半,且AB=BC=CA=2cm,求球的体积,表面积.解:如图,设球O半径为R,截面⊙O′的半径为r,例题讲解第41页/共61页OABC例3.已知过球面上三点A、B、C的截面到球心O的距离等于球半径的一半,且AB=BC=CA=2cm,求球的体积,表面积.例题讲解第42页/共61页2.一个正方体的顶点都在球面上,它的棱长是4cm,这个球的体积为___cm3.81.球的直径伸长为原来的2倍,体积变为原来的_倍.练习一课堂练习第43页/共61页3.有三个球,一球切于正方体的各面,一球切于正方体的各侧棱,一球过正方体的各顶点,求这三个球的体积之比_________.探究:若正方体的棱长为a,则:⑴正方体的内切球的直径=a⑶与正方体所有侧棱相切的球的直径=⑵正方体的外接球的直径=第44页/共61页7.将半径为1和2的两个铅球,熔成一个大铅球,那么这个大铅球的表面积是______.5.长方体的共顶点的三个侧面积分别为,则它的外接球的表面积为_____.6.若两球表面积之差为48π,它们大圆周长之和为12π,
则两球的直径之差为______.练习二课堂练习第45页/共61页例5、如图是一个奖杯的三视图,单位是cm,试画出它的直观图,并计算这个奖杯的体积.(精确到0.01cm)86618515151111x/y/z/第46页/共61页解:这个奖杯的体积为V=V正四棱台+V长方体+V球其中V正四棱台V长方体=6×8×18=864V球=所以这个奖杯的体积为V≈
1828.76(cm3)第47页/共61页了解球的体积、表面积推导的基本思路:分割→求近似和→化为标准和的方法,是一种重要的数学思想方法—极限思想,它是今后要学习的微积分部分“定积分”内容的一个应用;熟练掌握球的体积、表面积公式:课堂小结第48页/共61页课堂小结r’=r上底扩大r’=0上底缩小柱体、椎体、台体的表面积:第49页/共61页高考链接1.(2009山东)一空间几何体的三视图如图所示,则该几何体的体积为()俯视图
2
2
2
正(主)视图22侧(左)视图A.B.C.D.C第50页/共61页【解析】:该空间几何体为一圆柱和一四棱锥组成的,圆柱的底面半径为1,高为2,体积为,四棱锥的底面边长为,高为所以体积为:所以该几何体的体积为:第51页/共61页2.(2009辽宁)设某几何体的三视图(单位:cm)如图所示,(尺寸的长度单位为m).则该几何体的体积为__________。
34m3正视图侧视图俯视图第52页/共61页【解析】由三视图知其为三棱锥,由“主左一样高,主俯一样长,俯左一样宽”可知高为2,底面三角形的底面边长为4,高为3,则所求棱锥体积为:第53页/共61页课堂练习
1.圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是_______。4πS第54页/共61页2.已知圆锥的表面积为a㎡,且它的侧面展开图是一个半圆,则这圆锥的底面直径为____________
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教师编制合同范本
- 2024届广东省深圳市龙文教育高三数学试题月测(四)试题
- 沈阳买二手房定金合同范本
- 2024届广东省广州市顺德区广州第一中学高三期中检测试题数学试题试卷
- 翔安教育集团幼儿园园长(副园长)应聘报名表
- 土地撂荒合同范本
- 核酸转运合同范本
- 订购婚纱合同范本
- 劳务试用合同范本
- 储存蔬菜合同范本
- 成语故事课件一诺千金
- 物业公司环境因素清单
- 国内旅游出团通知书(新版)
- 赶工措施费申请报告
- 订单协调管理流程
- 全桥逆变电路滤波电路设计步骤
- 蒲公英总黄酮的提取及其抑菌性能
- 4gl语言开发原则及规范--简化版
- 工程量确认单样本(管线)
- 区最新关于生活垃圾分类工作推进会上的讲话稿
- 除尘器安装专业监理实施细则
评论
0/150
提交评论