




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
不等式与不等式组适用年级七年级所需时间课内9课时,课外2课时主题单元学习概述“不等式与不等式组”主题单元结构包括“相关概念”、“探究性质”、“简单应用”三部分,这与课本的内容安排大体相同。教材的编写顺序是“一元一次不等式(组)及其相关概念,不等式的性质,一元一次不等式(组)的解法及解集的几何表示,利用一元一次不等式分析、解决实际问题。教材以实际问题为例引出不等式及其解集的概念,然后类比一元一次方程,引出一元一次不等式的概念。为进一步讨论不等式的解法,接着讨论了不等式的性质,并运用它们解简单的不等式。在此基础上,教材从一个选择购物商店问题入手,对列、解一元一次不等式作了进一步的讨论,并归纳一元一次不等式与一元一次方程的异同及应注意的问题。教材以突出应用为目的。在教学中我打破教材安排,采用一种专题式设计,主要考虑到知识之间的关联,打破教材的原有安排,把不等式、一元一次不等式(组)等有关的概念放在一起作为专题一集中处理,把不等式性质及其应用作为专题二集中处理,这是考虑到类比一元一次方程的学习,学完概念后,学习一元一次方程的解法然后学习一元一次方程与实际问题。运用类比的方法学习不等式与不等式组。学完一元一次不等式后,就要学习如何解一元一次不等式,很显然要解决这个问题,就要知道解一元一次不等式的依据不等式的性质。因此,将这些内容紧密联系,层层递进,易于激发学生的学习兴趣也有利于帮助学生理解知识之间的联系,展示数学知识的整体性。专题三的简单应用是考虑到学完知识学生喜欢追问:学习这些有什么用处呢?而不等式性质问题恰恰会用到解一元一次不等式(组),而学习解一元一次不等式(组)在实际生活中有什么用处呢?接着学习实际问题与一元一次不等式(组),而且学生可以经历从实际问题抽象出数学问题,建立数学模型,应用已有知识解决问题的过程,从而加深对相关知识的理解,提高思维能力主题单元规划思维导图主题单元学习目标〔知识与技能〕1、了解一元一次不等式(组)及其相关概念;2、理解不等式的性质;3、掌握一元一次不等式(组)的解法并会在数轴上表示解集;4、学会应用一元一次不等式(组)解决有关的实际问题。
〔过程与方法〕1、通过观察、对比和归纳,探索不等式的性质,在利用它解一元一次不等式(组)的过程中,体会其中蕴涵的化归思想;2、经历把头际问题抽象为兀次不等式的过程,体会兀次不等式(组)是刻画现实世界中不等关糸的一种有效的数学模型•〔情感、态度与价值观〕1、通过类比一兀一次方程的解法从而更好地去掌握兀次不等式的解法,树立辩证唯物主义的思想方法;2、在利用一元一次不等式(组)解决问题的过程中,感受数学的应用价值,提高分析问题、解决问题的能力。对应课标理解不等式、一兀一次不等式的概念。类比等式的性质探索得出不等式的性质理解掌握不等式的性质,会运用不等式的性质解元次不等式(组),会用数值描述不等式(组)的解集。进一步体会数形结合思想。主题单元问题设计1•举例说明什么是等式?类比说出什么是不等式?不等式的符号有哪些?怎样判断个式子是否是不等式?举例说明什么是兀次方程,类比说出兀次不等式的概念。学习了等式的相关概念及性质,如何学习不等式?在运用不等式性质解不等式时应注意什么?专题划分专题1:不等式与一元一次不等式的感念专题2:探究不等式的性质专题3:应用:(应用一元一次不等式(组)解决实际问题。1)用不等式性质解一元一次不等式。(2)用不等式(组)解决实际问题。专题一不等式与兀次不等式的疋义及相关概念所需课时课内1课时专题一概述本专题是不等式这一主题的起始专题,进一步学习整个主题的基础。本专题的内容包括不等式的概念,一元一次不等式的概念、不等式的解和不等式的解集,用数轴表示不等式的解集等基础知识.本专题的重点不等式、兀次不等式、不等式的解、解集的概念是重点,难点不等式解集的理解与表示是难点。本专题的主要学习活动包括在学生已有知识和经验的基础上,在老师指导下系统准确地提炼出不等式和一元一次不等式的定义;理解并掌握不等式的解和不等式的解集等概念;学生的主要学习成果包括:理解并掌握不等式、元次不等式的定义及相关概念,会借助工具(纸、笔、直尺,几何画板软件等)画出数轴表示不等式的解集专题学习目标知识与能力初步了解不等式及不等式的解的意义。
能够用不等式表示数量关系,会判断个数是不是已知不等式的解。过程与方法通过对问题的探索,适当渗透变量知识,让学生发现不等式的解和方程的解的区别。通过经历实际问题中数量关系的分析抽象过程,体会现实世界各种各样的数量关系,有等量关系也有不等量关系。情感、态度、价值观认识到不等式知识在现实生活中的作用,通过讨论、交流的过程体验数学活动充满着探索性和创造性。专题问题设计1、由情景问题引出不等式的概念2、通过类比方程的概念得出不等式兀次不等式的概念,3、不等式的解和解集怎样定义?所需教学材料和资源常规资源作图工具(直尺,三角尺等)教学支撑环境多媒体教室,其他纸笔等学习活动设计9.1.1不等式及其解集[教学目标]知识与能力初步了解不等式及不等式的解的意义。能够用不等式表示数量关系,会判断一个数是不是已知不等式的解。过程与方法通过对问题的探索,适当渗透变量知识,让学生发现不等式的解和方程的解的区别。通过经历实际问题中数量关系的分析抽象过程,体会现实世界各种各样的数量关系,有等量关系也有不等量关系。情感、态度、价值观认识到不等式知识在现实生活中的作用,通过讨论、交流的过程体验数学活动充满着探索性和创造性。[重点难点]不等式、一元一次不等式、不等式的解、解集的概念是重点;不等式解集的理解与表示是难点。[教学过程]一、情景导入[投影1]一辆匀速行驶的汽车在11:20时距离A地50千米,要在12:00以前驶过A地,车速应该具备什么条件?题目中有等量关系吗?没有。那是什么关系呢?从时间上看,汽车要在12:00之前驶过A地,则以这个速度行驶50千米所用的时间不到2/3小时,即汽车驶过A地的时间小于2/3小时。从路程上看,汽车要在12:00之前驶过A地,则以这个速度行驶2/3小时的路程要超过50千米,即汽车2/3小时走的路程大于50千米。这些是不等关系
我们看到不等式的解不是一个,你还能找出这个不等式的其他解我们看到不等式的解不是一个,你还能找出这个不等式的其他解吗?它的解到底有多少个?如77、81、101等等,所有大于75的数都是这个不等式的解,它的解有无数个。一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集。如所有大于75的数组成不等式2/3x>50的解集,写作x>75,这个解集可以用数轴来表示。求不等式的解集的过程叫做解不等式.四、能力提升:例题讲解例[投影4]在数轴上表示下列不等式的解集:(1)x>-1;(2)x>-1;(3)x<-1;(4)x<-1k-1L-c(1)―LA°O)-訂⑷4②X与3的差是正数;③X的4倍与5的和是负数在一4,—2,—1,0,1,3中,找出使不等式成立的x值:(l)x+5>3,(2)3x<5在数轴上表示下列不等式的解集:①x〈2②x>—3不等式x<5有多少个解?有多少个正整数解?能否用严格的数学语言不等式、一兀一次不等式及其解或解集的概念.评价要点能否借助工具准确画出不等式的解集.专题二探究不等式的性质所需课时3课时专题二概述一兀一次不等式的性质是本章学习的基础,是接下来学习一兀一次不等式的解法的关键。通过这一节课的学习,让学生学会1、探究不等式的基本性质并熟记;2、能利用不等式的基本性质对不等式进彳丁简单的变形,并能说出每一步变形的依据;3、培养学生的探究能力和概括问题的能力教材分析不等式的基本性质是研究不等式的性质,是求解不等式的依据。教材和教案设计本着让学生边尝试边观察,边探索边概括的原贝V,以便在知识的发生过程中感受知识,在感受过程中接受知识,在接受过程中理解知识,在理解过程中记忆知识。另外,不等式的三个基本性质在表述上也有区别,学生学习中应提醒他们注意。尤其是性质3与前两个性质的区别。教学重点:不等式的基本性质的内容教学难点:不等式的基本性质3的探索及应用教学方法讲授法、探究法、自学释疑法、分组讨论法通过实例的讲授,学生自己发现性质1并概括总结,性质2、3由学生自学、小组讨论后概括,性质3教师适当解释。性质的应用中体现讲练结合。专题学习目标知识技能:理解和掌握不等式的基本性质,并会灵活利用其进行变形。了解一元一次不等式的概念,掌握一元一次不等式的解法运用转化和比较的思想方法,参照一元一次方程的解法得到一元一次不等式的解法,并体会两者的区别与联系。对一元一次不等式解法的理解了解一元一次不等式组和它解集的概念掌握一元一次不等式组的解法,会利用数轴确定其解集过程与方法:通过自主探索或试验、归纳的方法,得到不等式基本性质,并会在不等式的变形中正确应用。一元一次不等式的解法的探索
会利用不等式的基本性质解些简单的不等式,注意与兀次方程解法做比较。一元一次不等式组的解法让学生经历知识的拓展过程,会应用数轴确定元次不等式的解集,感受数形结合的作用,逐步熟悉和掌握数形结合的思想方法。情感态度与价值观:通过自主探究体会到不等式与方程的类似与不冋之处,感受不等式解法的实际应用,进一步认识到数学是解决实际问题和进行交流的工具。能积极参与问题的讨论,经历知识的拓展过程,感受数形结合思想解决问题的作用,养成自主探索学习的习惯专题问题设计丄・说出一兀一次不等式的概念2-类比等式的性质猜想不等式的性质?3、不等式的性质与灯饰的性质有哪些区别?4、应用不等式的性质熟练解一元一次不等式。5、通过解一元一次不等式会解一元一次不等式组6、用数轴怎样表示不等式、不等式组的解集所需教学材料和资源常规资源多媒体课件、实物投影其他练习本、笔等学习活动设计一、创设情境,探究问题在解一元一次方程时,我们主要是对方程进行变形。在研究解不等式时,我们同样应先探究不等式的变形规律。如图1323所示,一个倾斜的天平两边分别放有重物,其质量分别为a和b,从天平实验看,显然a>b.[问题如果在两边盘内分别加上等量的砝码C,那么天平会发生什么变化?如果把砝码C拿出来呢?不等式的性质1如果a>b,那么a+c>b+c,a—c〉b—c这就是说,不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。313,2.3[问题不等式的两边都乘以(或除以)同一个不为零的数,不等号的方向是否也不变呢?[试一将不等式7>4两边都乘以同一个数,比较所得的数的大小,用“<”或>”填空:7X34X3,7X24X2,7X14X1,7X04X0,7X(1)4X(1),7X(—2)4X(2),7X(—3)4X(3),从中你能发现什么?[概括]:不等式的性质2如果a〉b,并且c〉0,那么ac>bc。不等式的性质3如果a>b,并且c<0,那么acvbco这就是说,不等式两边都乘以(或除以)同一个正数,不等号的方向不变不等式两边都乘以(或除以)同一个负数,不等号的方向改变。与解方程一样,解不等式的过程,就是要将不等式变形成x>a或x<a的形式。二、应用举例:例1:解不等式:(1)X—7<8(2)3x<2x-3解(1)不等式的两边都加上7,不等式的方向不变,所以
⑵已知:avbv0,比较下列各对数的大小:①a-8与b-2②a+3与b+9③|a与|b|④a2与b2四、课堂小结:不等式的3个基本性质:1.女口果a〉b,那么a+c〉b+c,a—c>b—c如果a〉b,并且c>0,那么ac〉bc。如果a>b,并且c<0,那么ac〈bc。五、布置作业:根据不等式的基本性质,把下列不等式化成xva或x>a的形式:(1)x—7>2(2)6xv5x—2(3)—xv-1小明在学了不等式的基本性质这一节后,他觉得很容易;并用很快的速度做了一道填空题,结果如下:(1)若x>y,贝Vx一zvy一z;⑵若xv0,贝3xv5x;⑶若x>y,贝yxz2>yz2;你同意他的做法吗?第二课时:解一元一次不等式一、复习引入:1、举例说出一元一次不等式的概念2、不等式的性质有哪些?二、试一试:解下列不等式
(1)x—7<8(2)3x<2x-3(3)1/2x>—3;(4)—2x<6解(1)x—7+7<8+乙x<15(2)3x—2x<2x—3—2xx<—3(3)1/2xx2>(—3)x2,得x>—6。(4)—2xx(—1/2)>6x(—1/2),得x>—3o三、例题讲解:解下列不等式,并将解集在数轴上表示出来:(1)2x—1<4x+13;(2)2(5x+3)<x—3(1—2x).解(1)2x—1<4x+13,2x—4x<13+1,—2x<14,x>—7.-a_7—6_5-4一3_2-a_7—6_5-4一3_2—1012V-(2)2(5x+3)<x—3(1—10x+6wx—3+6x3xW—9,x<—31T1T—3-2-1IB-4—3—2—101四、综合应用:当X取何值时,代数式(x+4)/3的值比(3x-l)/2的值大1?解根据题意,得(x+4)/3—(3x-1)/2>1,2(x+4)—3(3x—1)>6,2x+8—9x+3>6,—7x+11>6,—7x>—5,得x<5/7所以,当X取小于5/7的任何数时,代数式(x+4)/3的值比(3x-1)/2的值大1。。五、小组讨论:与你的同伴讨试从例4的解答中总结一下解一元一次不等式的步骤,论和交流。与你的同伴讨六、巩固练习:1.解下列不等式,并把解集在数轴上表示出来2-x<1;7(1)2x+1>3;2-x<1;7(3)2(x+1)<3x;(4)3(x+2)>4(x—1)+7.2.解不等式:(2x-3)/3>(3x-2)/2七、课堂小结:一元一次不等式的概念。2.一元一次不等式的解法步骤。八、布置作业:1、解不等式(3x+4)/2-3<7的非负整数解..第三课时:解不等式组一、创设问题情景,弓I入新课:[问题]:用每分钟可抽30吨水的抽水机来抽污水管道里积存的污水,估计积存的污水在1200吨到1500之间,那么大约需要多少时间才能将污水抽完?[分析]:设需要x分钟才能将污水抽完,那么总的抽水量为30x吨。由题意,积存的污水在1200吨到1500吨之间,应有1200W30x<1500上式实际上包括了两个不等式30>1200和30x<1500我们把两个一元一次不等式合在一起,就得到一个一元一次不等式组:r30x>1200,130r<1500.130x>1200,(30x<1500-301200,30"<1500一同时满足不等式①、②的未知数x应是这两个不等式解集的公共部分。在数轴上表示这两个不等式的解集(图1331)可知其公共部分是40和50之间的数(包括40和50),记作40Wx<50。这就是所列不等式组的解集。所提问题的答案为:大约需要40到50分钟才能将污水抽完■10S0ioS&[概括]:几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集。解一元一次不等式组,通常可以先分别求出不等式组中每一个不等式的解集,再求出它们的公共部分。利用数轴可以直观地帮助我们求出不等式组的解集。一、应用举例:1例1:解不等式组:TOC\o"1-5"\h\z\o"CurrentDocument"3x-1>2x+1①2x〉8②解解不等式①,得x>2解不等式②,得x>4在数轴上表示不等式①、②的解集不等式组的解集是x>4I[5x—3〉4+2,3・々2§工-3:务斗2f例2:小明解不等式组」「一-的是否对?女口毗山的过程如下,他解果不对,指出错在哪一步,并改正过来。因为5x-3〉4x+2,且4x+2〉3x-2,所以5x-3>3x-2.移项,得5x-3x>-2+3.解得x>1/2.诊断:上面的解法套用了解方程组的方法,是否正确,我们可以在x>1/2的条件下,任取一个X的值,看是否满足不等式组•如取X=1,将它代入5x-3>4x+2,得2>6(不成立)•可知x>1/2不是原方程组的解集,其造成错误的原因是由原不等式组变形为一个新的不等式
时,改变了不等式的解集正解:由5x—3>4x+2,得x>5.由4x+2>3x—2,得x>—4.综合x>5和x>—4,得原不等式组的解集为x>5・三、课堂练习:教材P66:2、3、5解下列不等式组,并把它们的解集在数轴上表示出来。rx—1<rx—1<0f:2—5<1.I"2r-1>O二h-鋼17<0.L<3x<Qr四、小结:>0.'4r+7>0.四、小结:一元一次不等式组的概念一元一次不等式组的解集有几种情况,如何确评价要点1.解一元一次不等式时要写明运用了那条性质强调运用不等式的性质时,应首先认清该数的数性,在决定是否变号。当系数中含有字母时,应对系数进行分类讨论。注意不等式的三条性质是不等式变形的理论依据。专题三实际问题与一元一次不等式(组)所需课时课内2课时专题三概述本专题是不等式这一主题的一个重要专题,体现了不等式等知识在现实生活中的一个具体应用。本专题的内容一元一次不等式与实际问题、一元一次不等式组与实际问题本专题的重点是用一元一次不等式解决实际问题是重点;用一元一次不等式组解决有关的实际问题。[难点•;正确分析实际问题中的不等关系是难点以及找不等关系本专题的主要学习活动由老师设置的情景问题引导学生将实际问题转化为数学问题,根据题意找题目的不等关系学生的主要学习成果包括:将实际问题转化为数学问题,能根据题意找出题目中的不等关系。专题学习目标知识技能:1列一元一次不等式解应用题。解不等式在实际问题中的应用。通过对问题的探索,进行简单的实际应用(不等式组)。
过程与方法:一元一次不等式在实际问题中的应用。在头际问题中建立兀次不等式(组)的数量关系。情感态度与价值观:通过自主探索研究实际问题中的数量关系,感受不等式解法的实际应用和数学建摸的思想,体会不等式冋样是刻画现实世界的数量关系的重要模型。进一步认识到数学是解决实际问题和进行交流的工具。能积极参与问题的讨论,经历知识的拓展过程,感受数形结合思想解决问题的作用,养成自主探索学习的习惯专题问题设计说出不等式(组)的概念?归纳总结出列一元一次不等式(组)解应用题的步骤?所需教学材料和资源常规资源作图工具(直尺,三角尺等)教学支撑环境多媒体教室,实物投影其他练习本、笔学习活动设计第课时:实际问题与兀次不等式一、创设情境,指导示范:问题1:个工程队原定在10天内至少要挖土600m3,在前两天共完成了120m3,由于整个工程调整工期,要求提前两天完成挖土任务。问以后几天内,平均每天至少要挖土多少m3?[分析]:注意分析题中主要的数量关系,理解关键词“至少”的含义。解:设以后几天平均每天要挖m3,根据题意得:问题2:在“科学与艺术”知识竞赛的预选赛中共有20道题,对于每一道题,答对得10分,答错或不答扣5分,总得分不少于80分者通过预选赛。育才中学25名学生通过了预选赛,它们分别可能答对了多少道题?[实践与探索]:试解决这个问题(不限定方法)。你是用什么方法解决的?有没有其他方法?与你的同伴讨论和交流一下。1、2002年北京空气质量良好(二级以上)的天数与全年天数之比达到55%,如果到2008年这样的比值要超过70%,那么2008年空气质量良好的天数要比2002年至少增加多少?分析:2002年北京空气质量良好的天数是多少?用x表示2008年增加的空气质量良好的天数,则2008年北京空气质量良好的天数是多少?本题的不等关系是什么?2002年北京空气质量良好的天数是365X55%;2008年北京空气质量良好的天数是x+365X55%;不等关系是:2008年北京空气质量良好的天数+366>70%.解:设2008年北京空气质量良好的天数比2002年增加x天,依题意,得(X+365X55%)/366>70%去分母,得X+200.5>256.2移项,合并同类项,得X>55.45思考:这是本题的答案吗?为什么?本题的答案是什么?不是。因为X为正整数。「•x>56答:2008年北京空气质量良好的天数至少比2002年增加56天。注意:用不等式解应用问题时,要考虑问题的实际意义。例1与例2中的未知数都应是正整数。2、甲、乙两个商场以同样的价格出售同样的商品,同时又各自推出不同的优惠措施.甲商场的优惠措施是:累计购买100元商品后,再买的商品按原价的90%收费;乙商场则是:累计购买50元商品后,再买的商品按原价的95%收费.顾客选择哪个商店购物能获得更多的优惠?分析:由于甲商场优惠措施的起点为购物100元,乙商场优惠措施的起点为购物50元,起点数额不同,因此必须分别考虑.你认为应分哪几种情况考虑?分三种情况考虑:①累计购物不超过50元;②累计购物超过50元但不超过100元;③累计购物超过10°元。(1)如果累计购物不超过50元,则在两店购物花费有区别吗?为什么?没有区别。因为两家商店都没有优惠。(2)如果累计购物超过50元但不超过100元,则在哪家商店购物花费小?为什么?在乙商店购物花费小。因为乙商店有优惠,而甲商店没有优惠。(3)如果累计购物超过100元,那么在哪家商店购物花费小?因为两家商店都有优惠,所以要分三种情况考虑:设累计购物X元(x>100),则在甲商店购物花费多少元?在乙商店购物花费多少元?在甲商店购物花费:100+0.9(xT00)元;在乙商店购物花费:50+0.95(x-50)。若在甲商场购物花费小,则50+0.95(x-50)>100+0.9(x-100)解之,得x>150若在乙商场购物花费小,则50+0.95(x-50)v100+0.9(x-100)解之,得XV150若在两家商场购物花费相同。50+0.95(x-50)=100+0.9(x-100)解之,得x=150答:如果累计购物不超过50元,则在两店购物花费一样多。如果累计购物超过50元但不超过100元,则在乙商店购物花费小。若累计购物多于150元,在甲商场购物花费小;若累计购物等于150元,在两商场购物花费一样多;若累计购物多于100元少于150元,在乙商场购物花费小。三、课堂练习[投影2]某校两名教师拟带若干名学生去旅游,联系了两家标价相同的旅游公司.经洽谈,甲公司的优惠条件是一名教师全额收费,其余师生按7.5折收费;乙公司的优惠条件是全体师生都按8折收费.若设标价为a元,那么哪个公司更优惠?四、课堂小结1、列不等式解应用题与列方程解应用题的步骤相同,所不同的是前者是不等关系,列出的是不等式,后者相等关系,列出的是方程。2、列不等式解应用题的关键是找出不等关系.找不等关系要抓住像“大于”、“不小于”、“超过”、“不足”、“至少”等等表示不等关系的词语。五、布置作业:某校准备组织290名学生进行野外考察活动,行李共有100件,学校计划租用甲、乙两种型号的汽车共8辆,经了解甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李。(1)设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案;(2)如果甲、乙两种汽车每辆的租车费用分别为2000元,1800元,请你选择最省钱的一种方案2、某校两名教师拟带若干名学生去旅游,联系了两家标价相同的旅游公司.经洽谈,甲公司的优惠条件是一名教师全额收费,其余师生按7.5折收费;乙公司的优惠条件是全体师生都按8折收费.若设标价为a元,那么哪个公司更优惠?第二课时:不等式组与实际问题一、导入新课前面我们用一元一次不等式解决了一些满足一个不等关系的实际问题,事实上,有很多问题满足两个不等关系,这就要用到一元一次不等式组。下面我们就利用一元一次不等式组解决有关的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030当代壁炉行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 2025-2030左旋商业门行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 2025-2030工程勘察行业兼并重组机会研究及决策咨询报告
- 2025-2030工业烘干设备行业市场前景分析及发展趋势与投资风险研究报告
- 2025-2030山楂茶产业市场深度分析及前景趋势与投资研究报告
- 2025-2030小麦收割机产业发展分析及发展趋势与投资前景预测报告
- 2025-2030宠物衣服市场市场现状供需分析及投资评估规划分析研究报告
- 2025-2030婴儿服装市场投资前景分析及供需格局研究预测报告
- 2025-2030天然气检漏仪市场发展分析及行业投资战略研究报告
- 2025-2030处方药项目商业计划书
- 沪教版数学八年级上册全册教案
- 特殊场所的消防安全知识培训
- 航海英语听力与会话
- 国家电网招聘2025-企业文化复习试题含答案
- 2024年官方兽医牧运通考试题库(含答案)
- 《hpv与宫颈癌》课件
- 【课件】校园安全系列之警惕“死亡游戏”主题班会课件
- 西安交通大学《程序设计思想方法与实践》2021-2022学年期末试卷
- 快乐读书吧:童年(专项训练)-2023-2024学年六年级语文上册(统编版)(含答案)
- 企业信息化建设管理制度
- 妇产科医生个人职业发展路径计划
评论
0/150
提交评论