




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
求函数的值域考点二函数值域(1)熟悉求函数值域的几种基本方法,遇到求值域的问题应优先考虑采用特殊方法,如不等式法、配方法、几何法、换元法等.(2)求函数的最值和求函数值域的常用方法是相同的,事实上,如果在函数的值域中存在一个最大(小)数,这个数就是函数的最大(小)值,因此求函数的最值与值域,其实质是相同的.例2答案:2考点三函数定义域和值域的综合应用1.函数的值域问题常常化归为求函数的最值问题,要注意基本不等式、二次函数及函数单调性在确定函数最值中的应用.2.对于含参的既给出定义域又给出值域的函数问题,可在定义域上用相应方法求值域,然后与已知值域对应得出相应等式.例3 已知函数f(x)=lg(x2+2mx+1)(m∈R).(1)若函数定义域为R,求m取值范围;(2)若函数值域为R,求m取值范围.【名师点评】本题是已知函数定义域或值域求函数中字母参数的取值范围,这类问题是常见题型,要注意(1)(2)的区别.例4【思路分析】分段函数的值域要分段求,最后求各段值域的并集。【名师点评】求某个函数的最值或值域时,首先要仔细、认真地观察其解析式的特征,然后再选择恰当的方法,一般优先考虑直接法、函数的单调性法.互动探究4例4条件不变,设函数g(x)=ax-2,x∈[-2,2],若对于任意的x1∈[-2,2],总存在x0∈[-2,2],使得g(x0)=f(x1)成立,求实数a的取值范围.方法技巧1.确定函数定义域的原则是:(1)当函数y=f(x)用表格给出时,函数的定义域是指表格中实数x的集合;(2)当函数y=f(x)用图象给出时,函数的定义域是指图象在x轴上投影所覆盖的实数x的集合;(3)当函数y=f(x)用解析式给出时,函数的定义域是指使解析式有意义的实数x的集合;(4)当函数y=f(x)由实际问题给出时,函数的定义域由实际问题的意义确定.方法感悟2.求函数的值域是一个较复杂的问题,也是很重要的问题(因为它和求函数的最值紧密相连),不管用什么方法求函数的值域,都要考虑其定义域.(1)当函数y=f(x)用表格给出时,函数的值域是指表格中实数y的集合;(2)当函数y=f(x)用图象给出时,函数的值域是指图象在y轴上的投影所覆盖的实数y的集合;(3)当函数y=f(x)用解析式给出时,函数的值域由函数的定义域及其对应法则惟一确定;(4)当函数由实际问题给出时,函数的值域由问题的实际意义决定.3.函数的最值定义:设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M.那么,称M是函数y=f(x)的最大值.类似地,可定义函数的最小值.求函数最值和求值域是分不开的,方法类似.事实上,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年秋新人教版九年级上册化学教学课件 第四单元 课题1 水资源及其利用(第一课时)
- 七年级生物上册 1.1.2 调查我们身边的生物教学设计1 (新版)新人教版
- 三年级英语下册 Module 6 Unit 1 What do you do on Sundays教学设计 外研版(三起)
- 雨霖铃赏析课件
- 船舶货物碰损险重点基础知识点
- 高危孕产妇培训
- 驾校业务员工作总结
- 老梗后遗症的护理
- 公司独立董事聘任合同二零二五年
- 离婚后财产分配协议书范例二零二五年
- 《沉淀溶解平衡》说播课课件(全国高中化学优质课大赛获奖案例)
- 技能比赛自我介绍
- 五年级《红楼梦》知识考试题库(含答案)
- 公积金提取单身声明
- 安全培训证明
- 陕西省西安市各县区乡镇行政村村庄村名居民村民委员会明细及行政区划代码
- 三年级道德与法治下册不一样的你我他
- 2022年龙岩市第一医院医护人员招聘笔试模拟试题及答案解析
- 2022版义务教育语文课程标准(2022版含新增和修订部分)
- 色谱、质谱、联用
- 苏教版小学数学四年级下册《图形旋转》练习题
评论
0/150
提交评论