推挽式高频变压器设计说明_第1页
推挽式高频变压器设计说明_第2页
推挽式高频变压器设计说明_第3页
推挽式高频变压器设计说明_第4页
推挽式高频变压器设计说明_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

..纯正弦波逆变器制作学习资料高频篇由发烧电子DIY空间提供一.电磁学计算公式推导:1.磁通量与磁通密度相关公式:Ф=B*S

Ф-----磁通<韦伯>

B

-----磁通密度<韦伯每平方米或高斯>1韦伯每平方米=104高斯

S

-----磁路的截面积<平方米>磁通密度磁通密度是磁感应强度的一个别名。垂直穿过单位面积的磁力线叫做磁通量密度,简称磁通密度,测量主机侧板底部磁通密度它从数量上反映磁力线的疏密程度。磁场的强弱通常用磁感应强度"B"来表示,哪里磁场越强,哪里B的数值越大,磁力线就越密。按照国际单位制磁感应强度的单位是特斯拉,其符号为T:磁感应强度还有一个过时的单位:高斯,其符号为G:1T=10000G。这个符号在技术设施中还广泛使用。通常条形磁铁两极附近的磁感应强度大约是几十到几百高斯。在处理与磁性有关问题时,除了要用到磁感应强度外,常常还要讨论穿过一块面积的磁力线数目,称做磁CPU附近磁通密度通量,简称磁通,有Φ示。磁通量的单位是韦伯,用Wb表示,以前还有麦克斯韦有Mx表示。如果磁场中某处的磁感应强度为B,在该处有一块与磁通垂直的面,它的面积为S,则穿过它的磁通量就是Φ=BS式中磁感应强度B的单位是高斯〔Gs;面积S的单位是平方厘米;磁通量的单位是麦克斯韦〔Mx>。磁通量的简介公式:Φ=BS,适用条件是B与S平面垂直。当B与S存在夹角θ时,Φ=B*S*cosθ。Φ读"fai"四声。单位:在国际单位制中,磁通量的单位是韦伯,符号是Wb,1Wb=1T*m^2;=1V*S,是标量,但有正负,正负仅代表穿向。意义:磁通量的意义可以用磁感线形象地加以说明.我们知道在同一磁场的图示中,磁感线越密的地方,也就是穿过单位面积的磁感线条数越多的地方,磁感应强度B越大.因此,B越大,S越大,穿过这个面的磁感线条数就越多,磁通量就越大.B与S平面不垂直的情况磁通量通过某一平面的磁通量的大小,可以用通过这个平面的磁感线的条数的多少来形象地说明。在同一磁场中,磁感应强度越大的地方,磁感线越密。因此,B越大,S越大,磁通量就越大,意味着穿过这个面的磁感线条数越多。表示磁场分布情况的物理量。通过磁场中某处的面元dS的磁通量dΦB定义为该处磁感应强度的大小B与dS在垂直于B方向的投影dScosθ的乘积,即dFB=BdScosθ式中θ是面元的法线方向n与磁感应强度B的夹角。磁通量是标量,θ<90°为正值,θ>90°为负值。通过任意闭合曲面的磁通量ΦB等于通过构成它的那些面元的磁通量的代数和,即对于闭合曲面,通常取它的外法线矢量〔指向外部空间为正。磁场的高斯定理指出,通过任意闭合曲面的磁通量为零,即它表明磁场是无源的,不存在发出或会聚磁力线的源头或尾闾,亦即不存在孤立的磁单极。以上公式中的B既可以是电流产生的磁场,也可以是变化电场产生的磁场,或两者之和。磁通密度是通过垂直于磁场方向的单位面积的磁通量,它等于该处磁场磁感应强度的大小B。磁通密度精确地描述了磁力线的疏密。通量概念是描述矢量场性质的必要手段,通量密度则描述矢量场的强弱。磁通量和磁通密度,电通量和电通密度都是如此。在国际单位制〔SI中,磁通量的单位是韦伯〔Wb。通电导体与磁场方向垂直时,它受力的大小既与导线长度L成正比,又与导线中的电流I成正比,即与I和L的乘积IL成正比,公式是F=ILB,式中B是磁感应强度。磁通量的定义为覆盖某面积的磁场的积分其中Φ为磁通量,B为磁感应强度,S为面积。已知高斯磁场定律为:Φ=BS这条方程的体积积分,跟散度定理合用,给出以下的结果:亦即是说,通过任何密闭表面的磁通量一定为零;自由"磁电荷"是不存在的。对比下,另一条麦克斯韦方程──高斯电场定律为:∫∫E.ds=Q/ε0其中:E为电场强度,ρ为自由电荷的密度〔不包括在物料中被束缚的双极电荷,ε0为真空介电常数。注意这指出了电单极的存在,也就是,自由的正或负电荷。磁通量密度向量的方向定义为从磁南极到磁北极〔磁铁里面。在磁铁外,场线会由北到南。若磁场通过能导电的电线环,而磁通量的改变的话,会引起电动势的生成,并因此会产生电流〔在环中。其关系式可由法拉第定律得出:这就是发电机背后的原理。B=H*μ

μ-----磁导率<无单位也叫无量纲>

H

-----磁场强度<伏特每米>

H=I*N/l

I

-----电流强度<安培>

N

-----线圈匝数<圈T>

l

-----磁路长路<米>2.电感中反感应电动势与电流以及磁通之间相关关系式:

EL=⊿Ф/⊿t*N

⑷EL=⊿i/⊿t*L

⊿Ф-----磁通变化量<韦伯>

⊿i

-----电流变化量<安培>

⊿t

-----时间变化量<秒>

N

-----线圈匝数<圈T>

L

-------电感的电感量<亨>

由上面两个公式可以推出下面的公式:

⊿Ф/⊿t*N=⊿i/⊿t*L变形可得:

N=⊿i*L/⊿Ф

再由Ф=B*S可得下式:

N=⊿i*L/<B*S>

且由⑸式直接变形可得:

⊿i=EL*⊿t/L

联合⑴⑵⑶⑷同时可以推出如下算式:

L=<μ*S>/l*N2

这说明在磁芯一定的情况下电感量与匝数的平方成正比<影响电感量的因素>3.电感中能量与电流的关系:

QL=1/2*I2*L

QL--------电感中储存的能量<焦耳>

I

--------电感中的电流<安培>

L

-------电感的电感量<亨>

4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数比与占空比的关系式:

N1/N2=<E1*D>/<E2*<1-D>>

N1--------初级线圈的匝数<圈>

E1--------初级输入电压<伏特>

N2--------次级电感的匝数<圈>

E2--------次级输出电压<伏特>二.根据上面公式计算变压器参数:

1.高频变压器输入输出要求:

输入直流电压:

200---340V

输出直流电压:

23.5V

输出电流:

2.5A*2

输出总功率:

117.5W

2.确定初次级匝数比:

次级整流管选用VRRM=100V正向电流<10A>的肖特基二极管两个,若初次级匝数比大则功率所承受的反压高匝数比小则功率管反低,这样就有下式:

N1/N2=VIN<max>/<VRRM*k/2>

N1-----初级匝数

VIN<max>------最大输入电压

k-----安全系数

N2-----次级匝数

Vrrm------整流管最大反向耐压

这里安全系数取0.9

由此可得匝数比N1/N2=340/<100*0.9/2>≌〔全等7.6

3.计算功率场效应管的最高反峰电压:

Vmax=Vin<max>+<Vo+Vd>/N2/N1

Vin<max>-----输入电压最大值

Vo-----输出电压

Vd

-----整流管正向电压

Vmax=340+<23.5+0.89>/<1/7.6>

由此可计算功率管承受的最大电压:Vmax≌525.36<V>

4.计算PWM占空比:

由⑽式变形可得:

D=<N1/N2>*E2/<E1+<N1/N2*E2>

D=<N1/N2>*<Vo+Vd>/Vin<min>+N1/N2*<Vo+Vd>⒀

D=7.6*<23.5+0.89>/200+7.6*<23.5+0.89>

由些可计算得到占空比D≌0.481

5.算变压器初级电感量:

为计算方便假定变压器初级电流为锯齿波,也就是电流变化量等于电流的峰值,也就是理想的认为输出管在导通期间储存的能量在截止期间全部消耗完。那么计算初级电感量就可以只以PWM的一个周期来分析,这时可由⑼式可以有如下推导过程:

〔P/η/f=1/2*I2*L

P-------电源输出功率<瓦特>η----能量转换效率f----PWM开关频率将⑺式代入⒁式:

〔P/η/f=1/2*<EL*⊿t/L>2*L

⊿t=D/f

<D-----PWM占空比>

将此算式代入⒂式变形可得:

L=E2*D2*η/<2*f*P>

这里取效率为85%,PWM开关频率为60KHz.

在输入电压最小的电感量为:

L=2002*0.4812*0.85/2*60000*117.5

计算初级电感量为:L1≌558<uH>

计算初级峰值电流:

由⑺式可得:

⊿i=EL*⊿t/L=200*<0.481/60000>/<558*10-6>

计算初级电流的峰值为:Ipp≌2.87<A>

初级平均电流为:I1=Ipp/2/<1/D>=0.690235<A>

6.计算初级线圈和次级线圈的匝数:

磁芯选择为EE-42<截面积1.76mm2>磁通密度为防止饱和取值为2500高斯也即0.25特斯拉,这样由⑹式可得初级电感的匝数为:

N1=⊿i*L/<B*S>=2.87*<0.558*10-3>/0.25*<1.76*10-4>

计算初级电感匝数:N1≌36<匝>

同时可计算次级匝数:N2≌5<匝>

7.计算次级线圈的峰值电流:

根据能量守恒定律当初级电感在功率管导通时储存的能量在截止时在次级线圈上全部释放可以有下式:

由⑻⑼式可以得到:

Ipp2=N1/N2*Ipp

Ipp2=7.6*2.87

由此可计算次级峰值电流为:Ipp2=21.812<A>

次级平均值电流为I2=Ipp2/2/<1/<1-D>>=5.7<A>

6.计算激励绕组<也叫辅助绕组>的匝数:

因为次级输出电压为23.5V,激励绕组电压取12V,所以为次级电压的一半

由此可计算激励绕组匝数为:N3≌N2/2≌3<匝>

激励绕组的电流取:I3=0.1<A>推挽全桥双向直流变换器的研究1

引言

随着环境污染的日益严重和新能源的开发,双向直流变换器得到了越来越广泛的应用,像直流不停电电源系统,航天电源系统、电动汽车等场合都应用到了双向直流变换器。越来越多的双向直流变换器拓扑也被提出,不隔离的双向直流变换器有BiBuck/Boost、BiBuck-Boost、BiCuk、BiSepic-Zeta;隔离式的双向直流变换器有正激、反激、推挽和桥式等拓扑结构。不同的拓扑对应于不同的应用场合,各有其优缺点。推挽全桥双向直流变换器是由全桥拓扑加全波整流演变而来。推挽侧为电流型,输入由蓄电池供给,全桥侧为电压型,输入接在直流高压母线上。此双向直流变换器拓扑适用在电压传输比较大、传输功率较高的场合。

本文分析了推挽全桥双向直流变换器的工作原理,通过两种工作模式的分析,理论上证明了此拓扑实现能量双向流动的可行性,并对推挽侧开关管上电压尖峰形成原因进行了分析,提出了解决方法,在文章的最后给出了仿真波形和实验波形。2工作原理

图1为推挽全桥双向DC/DC变换器原理图。图2给出了该变换器的主要波形。变换器原副边的电气隔离是通过变压器来实现的,原边为电流型推挽电路,副边为全桥电路,该变换器有两种工作模式:〔1升压模式:在这种工作模式下S1、S2作为开关管工作;S3,S4,S5,S6作为同步整流管工作,整流方式为全桥整流,这种整流方式适用于输出电压比较高,输出电流比较小的场合。由于电感L的存在S1、S2的占空比必须大于0.5。〔2降压模式:在这种工作模式下S3,S4,S5,S6作为开关管工作,S1、S2作为同步整流管工作,整流方式为全波整流。分析前,作出如下假设:所有开关管、二极管均为理想器件;

所有电感、电容、变压器均为理想元件;

,;

2.1升压工作模式在升压工作模式下,原边输入为电流型推挽电路,副边输出为全桥整流电路。S1,S2作为开关管工作,S3,S4,S5,S6作为同步整流管工作。电感电流工作于连续模式。图1推挽全桥双向DC/DC变换器图2推挽全桥双向DC/DC变换器电路波形以一个开关周期T为例:2.2降压工作模式在降压工作模式下,输入为全桥电路,输出为全波整流电路。S3,S4,S5,S6作为开关管工作,S1,S2作为同步整流管工作。以一个开关周期T为例:由此可见,当与〔,;与〔,互补工作时,输入输出电压关系是相同的,变换器具有很好的可逆性。3

缓冲电路推挽全桥双向直流变换器推挽侧的两个开关管在关断时有较大的电压尖峰。这是由于电感和漏感的存在。因为两管的占空比大于0.5,所以存在共同的导通时间,当这段时间结束关断其中一个开关管时,会引起很大的,形成较大的电压尖峰加在开关管上。而全桥侧由于是电压型且不存在短路问题,所以没有电压尖峰的问题。基于以上问题就需要采用合适的缓冲电路来缓解电压尖峰问题。3.1

缓冲电路分析与选择缓冲电路分为有损缓冲电路和无损缓冲电路两类,有损缓冲电路结构简单,便于设计参数,例如RCD缓冲电路;无损缓冲电路虽不会造成电路的损失,但一般结构复杂,参数设计不易,有时还会影响开关管的选择,例如LCD缓冲电路。基于以上原因,决定采用LCD有损缓冲电路。3.2

RCD缓冲电路图3是采用了RCD缓冲电路的推挽全桥双向直流变换器。当开关管关断时,缓冲电路中的D迅速导通给C充电,由于电容的特性,开关管DS间的电压缓慢上升。当开关管开通时,C上的能量再通过开关管和R消耗掉。C和R的参数设计十分重要,C选的过小会影响效果,过大会加大损耗,R的设计取决于C,要使C上的能量在开关管开通时全部放掉。一般

〔3公式中为开关管最小导通时间。图3带RCD缓冲电路的推挽全桥双向DC/DC变换器图四是未加缓冲电路和加了RCD缓冲电路的推挽侧开关管的DS间的仿真波形。由仿真波形可看出未加缓冲电路时电压尖峰大小几乎为电压平台的四倍,加了缓冲电路后电压尖峰降低为平台的两倍。缓冲效果还是比较好的。图4开关管的DS间的仿真波形4

电路主要参数设计4.1

高频变压器设计:

图5所示为开环升压模式实验波形,图6为开环降压模式实验波形,由图可以看出加了RCD缓冲电路的推挽全桥双向DC/DC变换器推挽侧开关管在关断时有较大的电压尖峰,约为电流平台的两倍与仿真结果一致,同时该电路很好的实现了电流的双向流动,与理论分析一致。6

结语本文分析了推挽全桥双向DC/DC变换器,该变换器适用于电压传输比较大,需要电气隔离的大功率场合,推挽侧开关管电压尖峰的问题可通过缓冲电路得到缓解。0.2.整流输出推挽式变压器开关电源

整流输出推挽式变压器开关电源,由于两个开关管轮流交替工作,相当于两个开关电源同时输出功率,其输出功率约等于单一开关电源输出功率的两倍。因此,推挽式变压器开关电源输出功率很大,工作效率很高,经桥式整流或全波整流后,仅需要很小的滤波电感和电容,其输出电压纹波就可以达到非常小。图1-30是桥式整流输出推挽式变压器开关电源工作原理图,除了整流滤波电路以外,其余部分电路的工作原理基本与图1-27相同。桥式整流电路由D1、D2、D3、D4组成,C为储能滤波电容,R为负载电阻,Uo为直流输出电压,Io为流过负载电阻的电流。

图1-31是全波整流输出的推挽式变压器开关电源工作原理图,同样,除了整流滤波电路以外,其余部分电路的工作原理基本与图1-27和图1-30相同。但开关变压器的次级需要多一个绕组,两个绕组N31、N32轮流输出电压;全波整流电路由D1、D2组成,C为储能滤波电容,R为负载电阻,Uo为直流输出电压,Io为流过负载电阻的电流。

图1-30与图1-31比较,桥式整流输出的推挽式变压器开关电源比全波整流输出的推挽式变压器开关电源多用两个整流二极管,但全波整流输出的开关变压器又比桥式整流输出的开关变压器多一组次级线圈。因此,图1-30桥式整流输出推挽式变压器开关电源比较适用于输出电流相对较小的情况;而图1-31全波整流输出推挽式变压器开关电源比较适用于输出电流相对较大的情况。因为,大电流整流二极管成本高,而且损耗功率也比较大。下面我们来详细分析图1-30桥式整流输出推挽式变压器开关电源和图1-31全波整流输出推挽式变压器开关电源的工作原理。

由于图1-30桥式整流输出推挽式变压器开关电源或图1-31全波整流输出推挽式变压器开关电源的电压输出电路中都接有储能滤波电容,储能滤波电容会对输入脉动电压起到平滑的作用,因此,图1-30和图1-31中输出电压Uo都不会出现很高幅度的电压反冲,其输出电压的峰值Up基本上就可以认为是半波平均值Upa。其值略大于正激输出nUi,即:桥式整流输出推挽式变压器开关电源或全波整流输出推挽式变压器开关电源,整流滤波输出电压Uo的值略大于正激输出nUi,n为变压器次级线圈N3绕组与初级线圈N1绕组或N2绕组的匝数比。因此,推挽式变压器开关电源的输出电压uo,主要还是由〔1-131式来决定。即:推挽式变压器开关电源的输出电压uo〔K1或K2接通期间,约等于开关变压器次级线圈N3绕组产生的正激式输出电压Up或Up-的半波平均值Upa或Upa-:uo=Upa=nUi——K1接通期间〔1-134

或uo=Upa-=-nUi——K2接通期间〔1-135上式中,uo为推挽式变压器开关电源的输出电压,n为变压器次级线圈N3绕组与初级线圈N1绕组或N2绕组的匝数比,Ui为开关变压器初级线圈N1绕组或N2绕组的输入电压。图1-32是桥式整流输出或全波整流输出推挽式变压器开关电源,在两个控制开关K1和K2交替接通和断开,且占空比D均等于0.5时,各主要工作点的电压、电流波形。图1-32-a和图1-32-b分别表示控制开关K1接通时,开关变压器初级线圈N1绕组两端的电压u1的波形,以及流过变压器初级线圈N1绕组两端的电流i1波形;图1-32-c和图1-32-d分别表示控制开关K2接通时,开关变压器初级线圈N2绕组两端的电压u2的波形,以及流过开关变压器初级线圈N2绕组两端的电流i2的波形;图1-32-e和图1-32-f分别表示控制开关K1和K2轮流接通时,开关变压器次级线圈N3绕组两端输出电压uo的波形,以及流过开关变压器次级线圈N3绕组两端的电流波形。

图1-32-f中,虚线箭头表示反激式输出电流是由最大值开始,然后逐渐减小到最小值;而实线箭头表示正激式输出电流则是由最小值开始,然后逐渐增加到最大值;因此,两者同时作用的结果,正好输出一个矩形波。

从图1-32-e可以看出,输出电压uo虽然还是由两个部分组成,一部分为输入电压Ui通过变压器初级线圈N1绕组或N2感应到次级线圈N3绕组的正激式输出电压〔uo;另一部分为励磁电流通过变压器初级线圈N1绕组或N2绕组存储的能量产生的反激式输出电压[uo];这里反激式输出电压[uo]不会再使波形产生反冲,是因为储能滤波电容会把反冲电压吸收掉,使其成为充电流。由于推挽式变压器开关电源输出电压的半波平均值Upa幅值基本上是稳定的,它不会像反激式输出开关电源那样,输出电压的幅值随着控制开关占空比的改变而改变。因此,如果需要调整推挽式变压器开关电源输出电压,只能通过改变两个控制开关的占空比,来改变输出电压的平均值。因此,在输出电压可调的推挽式变压器开关电源电路中,必须要在整流输出电路后面加接一个LC储能滤波电路,才能从整流输出的脉动直流电压中提取平均值输出。图1-33是输出电压可调的推挽式变压器开关电源电路。实际上图1-33就是在图1-31全波整流输出推挽式变压器开关电源电路的基础上,在整流输出电路后面加接了一个LC储能滤波电路。LC储能滤波电路的工作原理与图1-2串联式开关电源中的储能滤波电路工作原理基本相同。不过,在全波整流输出的LC储能滤波电路中可以省去一个续流二极管,因为用于全波整流的两个二极管可以轮流充当续流二极管的作用。关于LC储能滤波电路的详细工作原理,请参考《1-2-2.串联式开关电源输出电压滤波电路》章节。

由于图1-33中两个控制开关占空比D的可调范围很小〔小于0.5,并且在一个周期内两个控制开关均需要接通和关断一次,因此,输出电压的可调范围相对来说要比单激式开关电源输出电压的可调范围小很多;但双激式开关电源比单激式开关电源,具有输出功率大、电压纹波小、电压输出特性好等优点。

图1-34是输出电压可调的推挽式变压器开关电源各主要工作点的电压、电流波形。

图1-34-a表示控制开关K1接通时,开关变压器初级线圈N1绕组两端的电压波形;图1-34-b表示控制开关K2接通时,开关变压器初级线圈N2绕组两端的电压波形;图1-34-c表示控制开关K1和K2轮流接通时,开关变压器次级线圈N3绕组两端输出电压uo的波形。图1-34-d表示开关变压器次级线圈N3绕组两端输出电压经全波整流后的电压波形。图1-34-c中,Up、Up-分别表示开关变压器次级线圈N3绕组两端输出电压uo的正最大值〔半波平均值和负最大值〔半波平均值,[Up]、[Up-]分别表示开关变压器次级线圈N3绕组两端反激输出电压的正最大值〔半波平均值和负最大值〔半波平均值。

这里还需再次说明,实际上反激输出电压[Up]和[Up-]的脉冲幅度都很高,只不过它的能量很小,即宽度很窄,其幅度被限幅和平均以后就变得很低了。在整流输出电路中,反激输出电压[Up]、[Up-]的幅度一般都不会高于Up、Up-的幅度,其幅度高于Up、Up-将要被滤波电容两端的电压限幅,或通过变压器两个初级线圈的互感作用被输入电源电压限幅。图1-34-d中,实线波形对应控制开关K1接通时,开关变压器次级线圈N3绕组两端输出电压经桥式或全波整流后的波形;虚线波形对应控制开关K2接通时,开关变压器次级线圈N3绕组两端输出电压经桥式或全波整流后的波形。Ua表示整流输出电压的平均值。从图1-34-d可以看出,仅用储能电容对整流输出电压进行滤波,是很难从脉动直流中取出输出电压的平均值的,必须同时使用储能滤波电感才能取出输出电压的平均值。开关电源原理与设计推挽式变压器开关电源储能滤波电感、电容参数的计算1-8-1-3.推挽式变压器开关电源储能滤波电感、电容参数的计算

图1-33中,储能滤波电感和储能滤波电容参数的计算,与图1-2的串联式开关电源中储能滤波电感和储能滤波电容参数的计算方法很相似。根据图1-33和图1-34,我们把整流输出电压uo和LC滤波电路的电压uc、电流iL画出如图1-35,以便用来计算推挽式变压器开关电源储能滤波电感、电容的参数。

图1-35-a是整流输出电压uo的波形图。实线表示控制开关K1接通时,推挽式变压器开关电源开关变压器次级线圈N3绕组输出电压经整流后的波形;虚线表示控制开关K2接通时,推挽式变压器开关电源开关变压器次级线圈N3绕组输出电压经整流后的波形。Up表示整流输出峰值电压〔正激输出电压,Up-表示整流输出最低电压〔反激输出电压,Ua表示整流输出电压的平均值。

图1-35-b是滤波电容器两端电压的波形图,或滤波电路输出电压的波形图。Uo表示输出电压,或滤波电容器两端电压的平均值;ΔUc表示电容充电电压增量,2ΔUc等于输出电压纹波。1-8-1-3-1.推挽式变压器开关电源储能滤波电感参数的计算

在图1-33中,当控制开关K1接通时,输入电压Ui通过控制开关K1加到开关变压器线圈N1绕组的两端,在控制开关K1接通Ton期间,开关变压器线圈N3绕组输出一个幅度为Up〔半波平均值的正激电压uo,然后加到储能滤波电感L和储能滤波电容C组成的滤波电路上,在此期间储能滤波电感L两端的电压eL为:eL=Ldi/dt=Up–Uo——K1接通期间〔1-136式中:Ui为输入电压,Uo为直流输出电压,即:Uo为滤波电容两端电压uc的平均值。

在此顺便说明:由于电容两端的电压变化增量ΔU相对于输出电压Uo来说非常小,为了简单,我们这里把Uo当成常量来处理。

对〔1-136式进行积分得:

式中i〔0为初始电流〔t=0时刻流过电感L的电流,即:控制开关K1刚接通瞬间,流过电感L的电流,或称流过电感L的初始电流。从图1-35中可以看出i〔0=Ix。

当控制开关K由接通期间Ton突然转换到关断期间Toff的瞬间,流过电感L的电流iL达到最大值:

〔1-139和〔1-140式就是计算推挽式变压器开关电源输出电压的表达式。式中,Uo为推挽式变压器开关电源输出电压,Ui为推挽式变压器开关电源输入电压,Up为推挽式变压器开关电源开关变压器次级线圈N3绕组的正激输出电压,Up-为推挽式变压器开关电源开关变压器次级线圈N3绕组的反激输出电压,n为开关电源次级线圈N3绕组与初级线圈N1绕组或N2绕组的匝数比。

根据上面分析结果,〔1-138式可以写为:

由〔1-75式可知,当控制开关K1、K2的占空比均为0.5时,Upa与Upa-基本相等,由此我们也可以认为Up与Up-基本相等。

由于,当控制开关K1、K2的占空比均为0.5时,〔1-141式和〔1-142式的计算结果为0。因此,当控制开关K1、K2的占空比均为0.5时,推挽式变压器开关电源经整流后输出的电压波形基本上是纯直流,没有交流成分,输出电压Uo等于最大值Up,因此,可以不需要储能电感滤波。但是,如果要求输出电压可调,推挽式变压器开关电源的两个控制开关K1、K2的占空比必须要小于0.5;因为推挽式变压器开关电源正反激两种状态都有电压输出,所以在同样输出电压〔平均值的情况下,两个控制开关K1、K2的占空比相当于要小一倍。由此可知,当要求输出电压可调范围为最大时,占空比最好取值为0.25。当两个控制开关K1、K2的占空比取值均为0.25时,Upa=3Upa-,由此我们也可以认为Up等于3Up-。把上面已知条件代入〔1-142式,可求得:

<1-143、〔1-144、〔1-145式就是计算推挽式变压器开关电源储能滤波电感和滤波输出电压的表达式〔D为0.25时。式中Uo为推挽式变压器开关电源输出电压,Ui为推挽式变压器开关电源输入电压,T为控制开关的工作周期,F为控制开关的工作频率,n为开关电源次级线圈N3绕组与初级线圈N1绕组或N2绕组的匝数比。同理,〔1-143、〔1-144、〔1-145式的计算结果,只给出了计算推挽式变压器开关电源储能滤波电感L的中间值,或平均值,对于极端情况可以在平均值的计算结果上再乘以一个大于1的系数。开关电源原理与设计推挽式变压器开关电源储能滤波电容参数的计算1-8-1-3-2.推挽式变压器开关电源储能滤波电容参数的计算

由图1-35可以看出,在两个控制开关的占空比D分别等于0.25的情况下,电容器充、放电的电荷以及充、放电的时间和正、负电压纹波值均应该相等,并且电容器充电流的平均值也正好等于流过负载的电流Io与流过储能电感最小电流Ix的差。因此,电容器充时,电容器存储的电荷ΔQ为:〔1-148式和〔1-149式,就是计算输出电压可调的推挽式变压器开关电源储能滤波电容的公式〔D=0.25时。式中:Io是流过负载的电流,T为控制开关K1和K2的工作周期,ΔUP-P为输出电压的波纹电压。波纹电压ΔUP-P一般都取峰-峰值,所以波纹电压正好等于电容器充电或放电时的电压增量,即:ΔUP-P=2ΔUc。

同理,〔1-148式和〔1-149式的计算结果,只给出了计算输出电压可调的推挽式变压器开关电源储能滤波电容C的中间值,或平均值,即控制开关工作于占空比D为0.25时的情况,对于极端情况可以在平均值的计算结果上再乘以一个大于1的系数。由〔1-148式和〔1-149式可见,输出电压可调的推挽式变压器开关电源的储能滤波电容与串联式开关电源的储能滤波电容相比,在数值上小了很多,这是因为推挽式变压器开关电源采用全波整流或桥式整流输出,相当于占空比和工作频率都提高了一倍的缘故。占空比提高,可使流过储能滤波电感的电流不会出现断流;工作频率提高,可使储能滤波电容的充、放电时间缩短,即滤波器的时间常数可以减小。下一部分我们谈谈推挽式开关电源变压器参数的计算。开关电源原理与设计推挽式开关电源变压器参数的计算0.4.推挽式开关电源变压器参数的计算

推挽式开关电源使用的开关变压器有两个初级线圈,它们都属于励磁线圈,但流过两个线圈的电流所产生的磁力线方向正好相反,因此,推挽式开关电源变压器属于双激式开关电源变压器;另外,推挽式开关电源变压器的次级线圈会同时被两个初级线圈所产生的磁场感应,因此,变压器的次级线圈同时存在正、反激电压输出;推挽式开关电源有多种工作模式,如:交流输出、整流输出、直流稳压输出,等工作模式,各种工作模式对变压器的参数要求会有不同的要求。1-8-1-4-1.推挽式开关电源变压器初级线圈匝数的计算

由于推挽式变压器的铁心分别被流过变压器初级线圈N1绕组和N2两个绕组的电流轮流进行交替励磁,变压器铁心的磁感应强度B,可从负的最大值-Bm,变化到正的最大值+Bm,因此,推挽式变压器铁心磁感应强度的变化范围比单激式变压器铁心磁感应强度的变化范围大好几倍,并且不容易出现磁通饱和现象。推挽式变压器的铁心一般都可以不用留气隙,因此,变压器铁心的导磁率比单激式变压器铁心的导磁率高出很多,这样,推挽式变压器各线圈绕组的匝数就可以大大的减少,使变压器的铁心体积以及变压器的总体积都可以相对减小。

推挽式开关电源变压器的计算方法与前面正激式或反激式开关电源变压器的计算方法大体相同,只是对变压器铁心磁感应强度的变化范围选择有区别。对于具有双向磁极化的变压器铁心,其磁感应强度B的取值范围,可从负的最大值-Bm变化到正的最大值+Bm。关于开关电源变压器的计算方法,请参考前面"1-6-3.正激式变压器开关电源电路参数计算"中的"2.1变压器初级线圈匝数的计算"章节中的内容。

根据〔1-95式:

〔1-150式和〔1-151式就是计算双激式开关电源变压器初级线圈N1绕组匝数的公式。式中,N1为变压器初级线圈N1或N2绕组的最少匝数,S为变压器铁心的导磁面积〔单位:平方厘米,Bm为变压器铁心的最大磁感应强度〔单位:高斯;Ui为加到变压器初级线圈N1绕组两端的电压,单位为伏;τ=Ton,为控制开关的接通时间,简称脉冲宽度,或电源开关管导通时间的宽度〔单位:秒;F为工作频率,单位为赫芝,一般双激式开关电源变压器工作于正、反激输出的情况下,其伏秒容量必须相等,因此,可以直接用工作频率来计算变压器初级线圈N1绕组的匝数;F和τ取值要预留20%左右的余量。式中的指数是统一单位用的,选用不同单位,指数的值也不一样,这里选用CGS单位制,即:长度为厘米〔cm,磁感应强度为高斯〔Gs,磁通单位为麦克斯韦〔Mx。1-8-1-4-2.推挽式开关电源变压器初、次级线圈匝数比的计算A交流输出推挽式开关电源变压器初、次级线圈匝数比的计算推挽式开关电源如果用于DC/AC或AC/AC逆变电源,即把直流逆变成交流输出,或把交流整流成直流后再逆变成交流输出,这种逆变电源一般输出电压都不需要调整,因此电路相对比较简单,工作效率很高。用于逆变的推挽式开关电源一般输出电压都是占空比等于0.5的方波,由于方波的波形系数〔有效值与半波平均值之比等于1,因此,方波的有效值Uo与半波平均值Upa相等,并且方波的幅值Up与半波平均值Upa也相等。所以,只要知道输出电压的半波平均值就可以知道有效值,再根据半波平均值,就可以求得推挽式开关电源变压器初、次级线圈匝数比。根据前面分析,推挽式变压器开关电源的输出电压uo,主要由开关电源变压器次级线圈N3绕组输出的正激电压来决定。因此,根据〔1-128、〔1-129、〔1-131其中一式就可以出推挽式变压器开关电源的输出电压的半波平均值。由此求得逆变式推挽开关电源变压器初、次级线圈匝数比:n=N3/N1=Uo/Ui=Upa/Ui——变压比,D为0.5时〔1-152〔1-152式就是计算逆变式推挽开关电源变压器初、次级线圈匝数比的公式。式中,N1为开关变压器初级线圈两个绕组其中一个的匝数,N3为变压器次级线圈的匝数,Uo输出电压的有效值,Ui为直流输入电压,Upa输出电压的半波平均值。

〔1-152式还没有考虑变压器的工作效率,当把变压器的工作效率也考虑进去时,最好在〔1-152式的右边乘以一个略大于1的系数。B直流输出电压非调整式推挽开关电源变压器初、次级线圈匝数比的计算直流输出电压非调整式推挽开关电源,就是在DC/AC逆变电源的交流输出电路后面再接一级整流滤波电路。这种直流输出电压非调整式推挽开关电源的控制开关K1、K2的占空比与DC/AC逆变电源一样,一般都是0.5,因此,直流输出电压非调整式推挽开关电源变压器初、次级线圈匝数比可直接利用〔1-152式来计算。即:n=N3/N1=Uo/Ui=Upa/Ui——次/初级变压比,D为0.5时〔1-152不过,在低电压、大电流输出时,一定要考虑整流二极管的电压降。C直流输出电压可调整式推挽开关电源变压器初、次级线圈匝数比的计算直流输出电压可调整式推挽开关电源的功能就要求输出电压可调,因此,推挽式变压器开关电源的两个控制开关K1、K2的占空比必须要小于0.5;因为推挽式变压器开关电源正反激两种状态都有电压输出,所以在同样输出电压〔平均值的情况下,两个控制开关K1、K2的占空比相当于要小一倍。当要求输出电压可调范围为最大时,占空比最好取值为0.25。根据〔1-140和〔1-145式可求得:

〔1-153和〔1-154式就是计算直流输出电压可调整式推挽开关电源变压器初、次级线圈匝数比的公式。式中,N1为变压器初级线圈N1或N2绕组的匝数,N3为变压器次级线圈的匝数,Uo直流输出电压,Ui

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论