全套课件:工程流体力学_第1页
全套课件:工程流体力学_第2页
全套课件:工程流体力学_第3页
全套课件:工程流体力学_第4页
全套课件:工程流体力学_第5页
已阅读5页,还剩256页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023/1/111

SchoolofJetPropulsionBeihangUniversity.FLUIDMECHANICS2023/1/112Chapter1Introduction1.1PreliminaryRemarks

Whenyouthinkaboutit,almosteverythingonthisplaneteitherisafluidormoveswithinorneara

fluid.-FrankM.WhiteWhatisafluid?2023/1/113

TheconceptofafluidAsolidcanresistashearstress(剪切应力)byastaticdeformation,afluidcannot.Anyshearstressappliedtoafluid,nomatterhowsmall,willresultinmotionofthatfluid.Thefluidmovesanddeformscontinuouslyaslongastheshearisapplied.2023/1/114WhatisFluidMechanics

FluidMechanicsisthestudyoffluideitherinmotion(FluidDynamics流体动力学)oratrest(FluidStatics流体静力学)andsubsequenteffectsofthefluidupontheboundaries,whichmaybeeithersolidsurfacesorinterfaceswithotherfluids.2023/1/115ThefamouscollapseoftheTacomaNarrowBridgein1940Curvedshoot(Bananashoot)NospinSpinwhy2023/1/116Boeing74770.7×64.4×19.41(m)395000kgAn-22584×88.4×18.1(m)600,000kg

Howcantheairplanefly?Drag&Lift2023/1/1172023/1/118Theengineofaturbofan(涡扇)jet2023/1/119;2023/1/1110HistoryandScopeof

FluidMechanicsPre-history:Sailingshipswithoars(橹桨)andirrigationsystemwerebothknowninprehistory2023/1/1111Archimedes(285-212BC)Parallelogramlawforadditionofvectors

Lawofbuoyancy2023/1/1112LeonardodaVinci(1452-1519)*Equationofconservationofmassinone-dimensionalsteadyflow*Experimentalist*Turbulence2023/1/1113IsaacNewton(1642-1727)LawsofmotionLawsofviscosityofNewtonianfluid2023/1/1114

18thcenturyMathematicians:Euler(欧拉):

EulerequationBernoulli(伯努利):BernoulliequationFrictionless(无粘)flowsolutionsD’Alembert(达朗贝尔):

D’Alembertparadox(佯谬,疑题)Engineers:Hydraulics(水力学)relayingonexperimentChannels,Shipresistance,Pipeflows,WaveturbinePitotVenturiTorricelliPoiseuille2023/1/111519thcenturyNavier(1785-1836)

&

Stokes(1819-1905)N-Sequation

viscousflowsolutionReynolds(1842-1912)

TurbulenceFamousexperimentontransitionReynoldsNumber2023/1/111620thcenturyLudwigPrandtl

(1875-1953)Boundarytheory(1904)Tobethesinglemostimportanttoolinmodernflowanalysis.ThefatherofmodernfluidmechanicsVonkarman(1881-1963)I.taylor(1886-1975)Laidfoundationforthepresentstateoftheartinfluidmechanics2023/1/11171.2TheFluidasaContinuum(连续介质)Density(密度)Elementalvolume(流体微团、流体质点)*Largeenoughinmicroscope(微观)10-9mm3ofairatstandardconditionscontainsapproximately3×107molecules.Sodensityisessentiallyapointfunctionandfluidpropertiescanbethoughtofasvaryingcontinuallyinspace.*Smallenoughinmacroscope(宏观).Mostengineeringproblemsareconcernedwithphysicaldimensionsmuchlargerthanthislimitingvolume.2023/1/1118TheelementalvolumemustbesmallenoughinmacroscopeSuchafluidiscalledacontinuum,whichsimplymeansthatitsvariationinpropertiesissosmooththatthedifferentialcalculuscanbeusedtoanalyzethesubstance.2023/1/11191.3SomePropertiesoffluids1.viscosity(粘性)*Definition:Whenafluidissheared(剪切),itbeginstomove.Subsequently,apairofforcesappearontheshearsurface,whichresiststheshearmotionofthefluid.Thisiscalled

viscosityThisresistantforceis

shearstress.(剪切应力,内摩擦应力)Infact,thisshearmotionofafluidisakindofdeformation(变形)*Thenatureofviscosity:Forliquidiscohesion(结合)(movie)Forgasisthetransportofmomentum(动量输运)(movie)2023/1/1120m:Coefficientofviscosity(粘性系数)[FT/L2]n=m/r:Kinematicviscosity(运动学粘性系数)[L2/T]Velocitygradient*Newtonianlawofviscosity(牛顿粘性定律,牛顿内摩擦定律)UUu(y)xyShearstressThelinearfluid,whichfollowNewtonianresistancelaw,iscalledNewtonianflow.(牛顿流动、牛顿流体)Thevelocitygradientisinfactakindofdeformation.Realfluid(Viscous),Idealfluid(Inviscid&Frictionless)2023/1/11212.Compressibility(压缩性)Incompressible(不可压):r=constMostliquidflowsaretreatedasincompressible.Only1percentincreaseifpressureincreaseby220Compressible(可压缩):

r=r(P.T)Gasescanalsobetreatedasincompressiblewhentheirvelocityislessthan0.3Manumbers3.StateRelationsforGasesPerfect-gasLaw(理想气体状态方程)2023/1/11224.ThermalConductivity(热传导)

:

heatfluxinndirectionperunitareak:coefficientofthermalconductivityT:temperaturen:directionofheattransferFourier’slawofheatconduction2023/1/11231.4Twodifferentpointsofviewinanalyzingproblemsinmechanics*TheEulerianview(欧拉观点)andtheLagrangianview(拉格朗日观点)TheEulerianviewisconcernedwiththefieldofflow,appropriatetofluidmechanics.TheLagrangian

viewfollowsanindividualparticlemovingthoughtheflow,appropriatetosolidmechanics.Thecontrastoftwoframes2023/1/1124*Flowclassification(流动分类)AccordingtoEulerianview,anypropertyisfunctionofcoordinates(space)andtime.InCartesiansystem(直角坐标系),itcanbeexpressedasf(x,y,z,t)x,y,z,t:Eulerianvariablecomponent(欧拉变数)f:Functionofonlyonecoordinatecomponent,one-dimensional

(一维

1-D).Inthelikemanner,two-dimensional(二维2-D)

,three-dimensional

(三维

3-D)

:Functionoftime~~unsteady

(非定常)Otherwisesteady(定常)2023/1/1125OneTwodimensionalThreeSteadyUnsteadyCompressibleIncompressibleViscousInviscid2023/1/11261.5Streamline(流线),Pathline(迹线)&Flowfield(流场)*Whatisastreamline

Astreamlineisthelineeverywheretangenttothevelocityvectoratagiveninstant.2023/1/1127

A

pathlineistheactualpathtraversedbyagivenfluidparticles.Forsteadyflow:Streamline=Pathline*WhatisapathlinePathlinesinsteadyflowPathlinesinunsteadyflow2023/1/1128FlowPattern(流型、流普、流线族)Streamsurface(流面)&Streamtube(流管)Flowpattern:asetofstreamlinesStreamsurface:acollectionofallthestreamlinespassingthroughalinewhichisnotastreamline.Streamlinecannotintersect(相交),exceptforsingularitypoint(奇点)Streamtube:aclosedcollectionofstreamlines.Noflowacrossstreamtubewalls2023/1/1129Flowfield(流场)

:Inagivenflowsituation,thepropertiesofthefluidarefunctionsofpositionandtime,namelyspace-timedistributionsofthefluidproperties.2023/1/1130Streamlineequation(流线方程)ds->Infinitesimal(无穷小)dydxds2023/1/1131Example:Giventhesteadytwo-dimensionalvelocitydistributionu=kx,v=-ky,w=0,wherekisapositiveconstant.Computeandplotthestreamlinesoftheflow,includingdirection.Solution:

Sincetime(t)doesnotappearexplicitly,themotionissteady,sothatstreamlines,pathlineswillcoincide.Sincew=0,themotionistwo-dimensional.Integrating:Hyperbolas(双曲线)2023/1/1132Direction:

u=kx,v=-ky

QuadrantI(第一象限)(x>0,y>0)u>0,v<0

Atthepointo:u=v=0Singularitypoint,(汇)xyo2023/1/11331.5Surfaceforce(表面力)andbodyforce(质量力,体积力)Surfaceforceactscontinuouslyonthesidesurfacesoffluidelements.Pressure,friction.Contactsurfaceforceperunitarea(单位面积)(应力)Bodyforceactsontheentiremassoftheelement.Gravity,electromagnetic.NocotactPerunitmass(单位质量)g2023/1/1134Homework1.Giventhevelocitydistribution:u=-cy,v=cx,w=0Wherecisapositiveconstant.Computeandplotthestreamlinesoftheflow.2.Givenvelocitydistribution:u=x+t,v=-y+t,w=0(tistime)Findthestreamlinepassingthroughpoint(-1,-1)attheinstantt=0.35White: Chapter2潘锦珊: 第一章Chapter2

PressureDistribution

inafluid

(FluidStatics

Basic)36Definition:Unit:(SI)(PoundperSquireInch)Verticaltothesurfaceandpointintoit.Atanypoint,pressureisindependentoforientation.PropertiesofPressurePressure37Atanypointinastaticfluid,pressureisindependentoforientation.Verification:When(up)Forcesonleftandupsurface:38FluidMechanicsAerodynamicsFluidatrestFluidStaticsFluidDynamicsFluidinmotion39Pressureistheonlysurfaceforce.Pressuredistributionrelatestobodyforceonly.Dams(水坝)Buoyancyrelatedinstrument(利用浮力的装置)

Fluidpowersystem(液压驱动系统)Connectedvessel(连通器)……Applications:§2.1Fluid@rest40Consideracubeinastaticfluid Pressureatthecenterisp; Bodyforcesaredxdydz§2.2EquilibriumofaFluidElement41dxdydzdxdydzPressure:Bodyforce:42Inxdirection:ForceonleftsurfaceForceonrightsurfaceBodyforceinxdirectionEulerEquilibriumEquations(Euler1775)43Pressureincreaseinthedirectionofbodyforce.Surfacesinfluidwithsamepressure,verticaltobodyforceeverywhere,ingravityfielditisahorizontalplane.Equipressuresurface(等压面)44xzzhz0p01Basicrule:Generalsolution2Boundarycondition:§2.3

PressureDistributionunderGravity45PressureatfreesurfacePressureduetoweightontopAnypointwiththesamedepthhunderfreesurfacehasthesamepressure.equipressuresurface(等压面)Freesurfaceisanequipressuresurface46p0Watermanometer(水柱压力计)phPressuresourceConnectedwatertubeApplication?Absolutepressure(绝对压力)Relativepressure(相对压力)Gaugepressure(表压力)Vacuumdegree(真空度)Pressuremeasurementh(mmH2O)h+p0

(mmH2O)pA绝压pG表压47P2.7Homework:48Centroid(形心,重心)hcycChyxAαyxp0FindtotalforceP§2.4HydrostaticForceonPlaneSurface49hc:

depthofcentroidTheforceonasubmergedplaneequalsthepressureattheplatecentertimestheplatearea,independentoftheshapeoftheplateortheangle.CenterofpressureIsthecenterofpressureatcentroid?hcycChdydDhyxAαyxp050hcycChdydDhyxAαyxp0Momenttoxaxis51ExampleThegateis5mwide,ishingedatpointB,andrestagainstasmoothwallatpointA.FindTheforceonthegateexertedbyseawaterpressure,ThehorizontalforcePxexertedbythewallatpointA52(a)Centroid:3maboveBSolution:(b)LcL53HooverDamChannel

SelectadAandfindthethreeforcesonitIntegration§2.5HydrostaticForcesonCurvedSurfaces54Conclusion:x1.Horizontalforces:xOzAAx2.Verticalforces:OzV55Example:Findtheforcesactingonthehemi-sphericalcovers.RFOxyH45oSolution:56§2.6.1UniformLinearAcceleration(恒加速度直线运动)aX=-agxGravityBodyforceInertiaForce§2.6Fluidinrigidbodymotion57Boundarycondition:Atfreesurface(自由液面)Equipressuresurface(等压面)EulerEquilibriumEquations58Acupofcoffeeis7cmdeepatrest.1.Whetheritwillspilloutwhileax=7m/s2?2.GagepressureofpointA?Example:Solution:Itwillnotspillout!59§2.6.2Rigidbodyrotation(整体旋转)gω2rzfOω2yωxyROfω2xryxθBodyforce:Equipressuresurface:dp=060Paraboladish(抛物面)Freesurface:gω2rzfOz0Howtofindz0?旋转抛物面体的体积是同底面积和高的圆柱体积的一半。61P2.64P2.97(selective) P2.147P2.152Homework:3.1Systems(体系)versusControlVolumes

(控制体)

System:anarbitraryquantityofmassoffixedidentity.

Everythingexternaltothissystemisdenotedbythetermsurroundings,andthesystemisseparatedfromitssurroundingsbyit‘sboundariesthroughwhichnomassacross.(Lagrange拉格朗日)Chapter3IntegralRelations(积分关系式)

foraControlVolumeinOne-dimensionalSteadyFlows

ControlVolume(CV):

In

theneighborhoodofourproductthefluidformstheenvironmentwhoseeffectonourproductwewishtoknow.Thisspecificregioniscalledcontrolvolume,withopenboundariesthroughwhichmass,momentumandenergyareallowedtoacross.(Euler欧拉)FixedCV,movingCV,deformingCV3.2BasicPhysicalLawsofFluidMechanicsAllthelawsofmechanicsarewrittenforasystem,whichstatewhathappenswhenthereisaninteractionbetweenthesystemandit’ssurroundings.IfmisthemassofthesystemConservationofmass(质量守恒)Newton’ssecondlawAngularmomentumFirstlawofthermodynamic

Itisrarethatwewishtofollowtheultimatepathofaspecificparticleoffluid.Insteaditislikelythatthefluidformstheenvironmentwhoseeffectonourproductwewishtoknow,suchashowanairplaneisaffectedbythesurroundingair,howashipisaffectedbythesurroundingwater.Thisrequiresthatthebasiclawsberewrittentoapplytoaspecificregionintheneighboredofourproductnamelyacontrolvolume(CV).TheboundaryoftheCViscalledcontrolsurface(CS)BasicLawsforsystemforCV3.3TheReynoldsTransportTheorem(RTT)雷诺输运定理1122isCV.1*1*2*2*issystemwhichoccupiestheCVatinstantt.:Theamountofperunitmass

ThetotalamountofintheCVis:t+dtt+dttts:anypropertyoffluidt+dtt+dtttsInthelikemanner

s1-Dflow

:

isonlythefunctionofs.Forsteadyflow:t+dtt+dtttdsRTTIfthereareseveralone-Dinletsandoutlets:Steady,1-Donlyininletsandoutlets,nomatterhowtheflowiswithintheCV.3.3Conservationofmass(质量守恒)(ContinuityEquation)f=mb=dm/dm=1Massflux(质量流量)Forincompressibleflow:体积流量LeonardodaVinciin1500Ifonlyoneinletandoneoutlet

壶口瀑布是我国著名的第二大瀑布。两百多米宽的黄河河面,突然紧缩为50米左右,跌入30多米的壶形峡谷。入壶之水,奔腾咆哮,势如奔马,浪声震天,声闻十里。“黄河之水天上来”之惊心动魄的景观。

Example:Ajetengineworkingatdesigncondition.AttheinletofthenozzleAttheoutletPleasefindthemassfluxandvelocityattheoutlet.GivengasconstantT1=865K,V1=288m/s,A1=0.19㎡;

T2=766K,A2=0.1538㎡

R=287.4J/kg.K。

SolutionAccordingtotheconservationofmassHomework:P185P3.12,P189P3.36

3.4TheLinearMomentumEquation(动量方程)

(Newton’sSecondLaw

)Newton’ssecondlaw:NetforceonthesystemorCV(体系或控制体受到的合外力):Momentumflux(动量流量)1-Din&outsteadyRTTFfluxForonlyoneinletandoneoutletAccordingtocontinuity2-out,1-inExample:Afixedcontrolvolumeofastreamtubeinsteadyflowhasauniforminlet(r1,A1,V1)andauniformexit(r2,A2,V2).Findthenetforceonthecontrolvolume.Solution:Neglecttheweightofthefluid.Findtheforceonthewaterbytheelbowpipe.Example:1212Solution:selectcoordinate,controlvolumeInthelikemannerFindtheforcetofixtheelbow.Solution:coordinate,CVNetforceonthecontrolvolume:WhereFexistheforceontheCVbypipe,(onelbow)12FexSurfaceforce:(1)Forcesexposedbycuttingthoughsolidbodieswhichprotrudeintothesurface.(2)Pressure,viscousstress.AfixedvaneturnsawaterjetofareaAthroughanangleqwithoutchangingitsvelocitymagnitude.Theflowissteady,pressurepaiseverywhere,andfrictiononthevaneisnegligible.FindtheforceFappliedtovane.AwaterjetofvelocityVjimpingesnormaltoaflatplatewhichmovestotherightatvelocityVc.Findtheforcerequiredtokeeptheplatemovingatconstantvelocityandthepowerdeliveredtothecartifthejetdensityis1000kg/m3thejetareais3cm2,andVj=20m/s,Vc=15m/sNeglecttheweightofthejetandplate,andassumesteadyflowwithrespecttothemovingplatewiththejetsplittingintoanequalupwardanddownwardhalf-jet.Homework:P190-p3.46P191-p3.50P192-p3.54P192-p3.58Derivethethrust(推力)equationforthejetengine.airdragisneglectSolution::massfluxoffuelxBalancewiththrustCoordinate,CV

Example:Inagroundtestofajetengine,pa=1.0133×105N/m2,Ae=0.1543m2,Pe=1.141×105N/m2,Ve=542m/s,.Findthethrustforce.Solution:F16R=65.38KNxcoordinateArocketmovingstraightup.LettheinitialmassbeM0,andassumeasteadyexhaustmassflowandexhaustvelocityverelativetotherocket.Iftheflowpatternwithintherocketmotorissteadyandairdragisneglect.Derivethedifferentialequationofverticalrocketmotionv(t)andintegrateusingtheinitialconditionv=0att=0.Example:Solution:TheCVenclosetherocket,cutsthroughtheexitjet,andacceleratesupwardatrocketspeedv(t).coordinatezv(t)Z-momentumequation:v(t)z3.5TheAngular-MomentumEquation(Angular-Momentum):Netmoment(合力矩)Example:Centrifugal(离心)pumpThevelocityofthefluidischangedfromv1tov2anditspressurefromp1top2.Find(a).anexpressionforthetorqueT0whichmustbeappliedthosebladestomaintainthisflow.(b).thepowersuppliedtothepump.

blade

wForincompressibleflow1-DContinuity:Solution:TheCVischosen.blade

w

PressurehasnocontributiontothetorquearebladerotationalspeedsWorkonperunitmassHomework:P192-p3.55;P194-p3.68,p3.78;P200-p3.114,p3.116

BriefReviewBasicPhysicalLawsofFluidMechanics:TheReynoldsTransportTheorem:TheLinearMomentumEquation:TheAngular-MomentumTheorem:ConservationofMass:ReviewofFluidStaticsEspecially:

Question

Whenfluidflowing…

Bernoulli(1700~1782)Whatrelationsarethereinvelocity,heightandpressure?SeveralTragediesinHistory:

Alittlerailwaystationin19thRussia.The‘Olimpic’shipwreckinthePacificThebumpingaccidentofB-52bomberoftheU.S.airforcein1960s.3.6FrictionlessFlow:

TheBernoulliEquation1.DifferentialFormofLinearMomentumEquationElementalfixedstreamtubeCVofvariableareaA(s),andlengthds.Linearmomentumrelationinthestreamwisedirection:one-D,steady,frictionlessflowForincompressibleflow,r=const.Integralbetweenanypoints1and2onthestreamline:AQuestion:

IstheBernoulliequationamomentumorenergyequation?Hydraulicandenergygradelinesforfrictionlessflowinaduct.Example1:Findarelationbetweennozzledischargevelocityandtankfree-surfaceheighth.Assumesteadyfrictionlessflow.1,2maximuminformationisknownordesired.h12V2Solution:h12V2Continuity:Bernoulli:Torricelli1644AccordingtotheBernoulliequation,thevelocityofafluidflowingthroughaholeinthesideofanopentankorreservoirisproportionaltothesquarerootofthedepthoffluidabovethehole.Thevelocityofajetofwaterfromanopenpopbottlecontainingfourholesisclearlyrelatedtothedepthofwaterabovethehole.Thegreaterthedepth,thehigherthevelocity.ReviewofBernoulliequationThedimensionsofabovethreeitemsarethesameoflength!Example1:Findarelationbetweennozzledischargevelocityandtankfree-surfaceheighth.Assumesteadyfrictionlessflow.V2h12

Example2:Findvelocityintherighttube.hABInlikemanner:VExample3:FindvelocityintheVenturitube.12AsafluidflowsthroughaVenturitube,thepressureisreducedinaccordancewiththecontinuityandBernoulliequations.Example4:Estimaterequiredtokeeptheplateinabalancestate.(Assumetheflowissteadyandfrictionless.)Solution:Forplate,bylinealmomentumequation,byBernoulliequation,Example5:Firehose,Q=1.5m3/minFindtheforceonthebolts.1122Solution:Bycontinuity:ByBernoulli:1122Bymomentum:Example6:Findtheaero-forceontheblade (cascade).ABDCSSSolution:ABDCSSBycontinuity,叶片越弯,做功量越大。ABDCSSByBernoulli,BernoulliEquationforcompressibleflowSpecific-heatratioForisentropicflow:GasWeightneglectFornozzle:Fordiffuser:ExtendedBernoulliEquationForcompressor

多变压缩功Forturbine

多变膨胀功Homework!Page206:P3.158,P3.161Page207:P3.164,P3.165《气体动力学》第二章习题第一部分:Page2033题Reviewofexamples:V12AnalysisChooseyourcontrolvolumnBodyforceandSurfaceforceSolution1122xFindtheaero-forceontheblade (cascade).叶片越弯,做功量越大。ABDCSSByBernoulli,3.7TheEnergyEquation

ConservationofEnergyVarioustypesofenergyoccurinflowingfluids.Workmustbedoneonthedeviceshowntoturnitoverbecausethesystemgainspotentialenergyastheheavy(dark)liquidisraisedabovethelight(clear)liquid.Thispotentialenergyisconvertedintokineticenergywhichiseitherdissipatedduetofrictionasthefluidflowsdownramporisconvertedintopowerbytheturbineanddissipatedbyfriction.Thefluidfinallybecomesstationaryagain.Theinitialworkdoneinturningitovereventuallyresultsinaveryslightincreaseinthesystemtemperature.

EnergyPerUnitMass1122eFirstLawsofThermodynamicsConservationofEnergy1122Theenergyequation!Example:Asteadyflowmachinetakesinairatsection1anddischargeditatsection2and3.Thepropertiesateachsectionareasfollows:sectionA,Q,T,P,PaZ,m10.042.82110000.320.091.13814401.230.021.4100?0.4CV(1)(2)(3)110KWWorkisprovidedtothemachineattherateof110kw.Findthepressure(abs)andtheheattransfer.AssumethatairisaperfectgaswithR=287,Cp=1005.Solution:Massconservation:Byenergyequation:CV(1)(2)(3)110KW124Chapter4DifferentialRelationsForViscousFlow4.1PreliminaryRemarks*

TwowaysinanalyzingfluidmotionSeekinganestimateofgrosseffectsoverafiniteregionorcontrolvolume.

Integral

(2)Seekingthepoint-by-pointdetailsofaflowpatternbyanalyzinganinfinitesimalregionoftheflow.

Differential125TurbulentFlow

VS.

LaminarFlow*

TwoformsofflowTurbulent(湍,紊)flow,laminar(层)flow*

ViscousflowViscosityisinherentnatureofrealfluid.Strain(剪切)isverystrongininternalflow.TransitionReynolds

numberOsbroneReynoldsReynoldstank惯性力/粘性力1264.2TheAccelerationFieldofaFluidLocalaccelerationunsteadyConvectiveaccelerationnonuniformNonlinearterms127InthelikemannerAnypropertyΦSubstantial(Material)derivative随体(物质、全)导数128ExampleGiven.Findtheaccelerationofaparticle.129Xinlet(massflow)XoutletdxyzxdzdyInfinitesimalfixedCVXflowout4.3DifferentialEquationofMassConservationInthelikemanner

FlowoutofftheCV130LossofmassintheCV131ForsteadyflowForincompressibleflowExample1Underwhatconditionsdoesthevelocityfieldrepresentsanincompressibleflowwhichconservesmass?(where)132SolutionContinuityforincompressibleflowExample2Anincompressiblevelocityfield:u=a(x2-y2),w=b,a,bareconst,whatv=?SolutionAnarbitraryfunctionofx,z,t133Assignment:P264:P4.1(a),P4.2,P4.4,P4.9(a)134Newton’ssecondlaw4.4DifferentialEquationofLinearMomentumdxdzdyElementalvolumeWhatarethesurfaceforcesFs

ontheelementalvolume?135Surfaceforceonanelementalvolume:dxdzdyVectorSumSurfacestressNetSurfaceForce:136MomentumequationInthelikemannerItisnotthesestressesbuttheirgradient,whichcauseanetforceonthedifferentialvolume.137Tensor

张量138ConstitutiveRelation

本构Newton’sLaw(广义牛顿内摩擦定律)

Momentumequation(角标表示法)139SubstituteNewton’sConstitutiveRelationintoMENewtonfluid,linearfluid(牛顿流体,线性流体)140N-SEquation141ForincompressibleflowForinviscidflowFor2-D,steady,incompressibleflow1421434.5TheDifferentialEquationofEnergyInfinitesimalfluidelementdxdzdyThefirstthermodynamiclaw144(1)Thermalconductivity(2)othersX:HeatflowdxdydzAccordingFourier’sLaw:145质量力做功和表面力做功Bodyforce146SurfaceforcedxdydzX:X:NetpowerY,Z147NetpowerbyFsleft148单位体积内能变化率热传导等传热变型时表面应力做功149变型时表面应力做功压力做膨胀功粘性耗散Φ>0由连续方程:根据热力学公式,熵s、焓h和压强p、密度ρ的关系为:150已知Dû=CvDT,Dh=CpDT151SummaryoftheEquations152153154equationunknownvariablescontinuity1r,u,v,wmomentum3p,ru,v,wenergy1p,ru,v,w,Tperfectgas1p,r,TToSolveAFlow…1554.6Initial(初始)andBoundary(边界)ConditionsfortheBasicEquationsInitialConditions:t=t0

:BoundaryConditions:(Noslip)VelocityWallIfthewallisstationaryTemperature156DuetothehighlycomplexoftheN-Sequations,onlyafewparticularsolutionswerefounduptonow.Formostproblems,theequationsmustbesolvednumerically,whichisabrandnewcoursecalledCFD(ComputationalFluidDynamics)

Flowpassacylinder

Anexperimentresult

AcomputationresultSolvingtheN-Sequationsnumerically157xyohhUFlowbetweentwoparallelwalls,Steady,incompressible,neglectbodyforce,2-DContinuity:Momentum:4.7

ExactsolutionsofN-SEquations158=constantIntegraterelativetoyBoundarycondition:xyohhU159Applytheboundaryconditionxyoh-hu(y)Uxyoh-hWhenU=0PoiseuilleflowWhenSimpleCouetteflow160WhenWhenConsideraspecialcaseGeneralcase:yxoUxyoUxoyU161Q=0:yxoVolumeflowrateQ=u*dy162Thewallshearstresses1634.8DynamicalSimilarity&NondimensionalizationFlowpassacylinder

D=5cm

D=10cmMeasurementforWingtipvortex164N-Sequation,2-D,steady,nobodyforce,incompressibleUseU,LasreferencevelocityandlengthDimensionlessquantitiesxdirection:4.8.1NondimensionalizationofN-SEquation165Boundaryconditionsneedtobenormalizedtoo…166Forsteady,incompressible,nobodyforceflow,iftwogeometricallysimilarflowfieldshassameReynoldsnumber,thentheyhavesimilarflowstructurewhensameboundaryconditionsareprovided.WhyReynoldsnumber?167Inertiaforce/viscousforce两个铁球同时落地?168Flowpassacylinder

D=5cm

D=10cmFlowpassasquare

Re=50

Re=10000Theflowfieldsfortwoobjectsofthesameshapebutdifferentsizearesaidtobegeometricallysimilar.If,inaddition,theReynoldsnumberarethesame,thetwoflowsaresaidtobedynamicallysimilar,sincetheratioofrelevantforcesarethesameinthetwocases.4.8.2D

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论