




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023/1/111
SchoolofJetPropulsionBeihangUniversity.FLUIDMECHANICS2023/1/112Chapter1Introduction1.1PreliminaryRemarks
Whenyouthinkaboutit,almosteverythingonthisplaneteitherisafluidormoveswithinorneara
fluid.-FrankM.WhiteWhatisafluid?2023/1/113
TheconceptofafluidAsolidcanresistashearstress(剪切应力)byastaticdeformation,afluidcannot.Anyshearstressappliedtoafluid,nomatterhowsmall,willresultinmotionofthatfluid.Thefluidmovesanddeformscontinuouslyaslongastheshearisapplied.2023/1/114WhatisFluidMechanics
FluidMechanicsisthestudyoffluideitherinmotion(FluidDynamics流体动力学)oratrest(FluidStatics流体静力学)andsubsequenteffectsofthefluidupontheboundaries,whichmaybeeithersolidsurfacesorinterfaceswithotherfluids.2023/1/115ThefamouscollapseoftheTacomaNarrowBridgein1940Curvedshoot(Bananashoot)NospinSpinwhy2023/1/116Boeing74770.7×64.4×19.41(m)395000kgAn-22584×88.4×18.1(m)600,000kg
Howcantheairplanefly?Drag&Lift2023/1/1172023/1/118Theengineofaturbofan(涡扇)jet2023/1/119;2023/1/1110HistoryandScopeof
FluidMechanicsPre-history:Sailingshipswithoars(橹桨)andirrigationsystemwerebothknowninprehistory2023/1/1111Archimedes(285-212BC)Parallelogramlawforadditionofvectors
Lawofbuoyancy2023/1/1112LeonardodaVinci(1452-1519)*Equationofconservationofmassinone-dimensionalsteadyflow*Experimentalist*Turbulence2023/1/1113IsaacNewton(1642-1727)LawsofmotionLawsofviscosityofNewtonianfluid2023/1/1114
18thcenturyMathematicians:Euler(欧拉):
EulerequationBernoulli(伯努利):BernoulliequationFrictionless(无粘)flowsolutionsD’Alembert(达朗贝尔):
D’Alembertparadox(佯谬,疑题)Engineers:Hydraulics(水力学)relayingonexperimentChannels,Shipresistance,Pipeflows,WaveturbinePitotVenturiTorricelliPoiseuille2023/1/111519thcenturyNavier(1785-1836)
&
Stokes(1819-1905)N-Sequation
viscousflowsolutionReynolds(1842-1912)
TurbulenceFamousexperimentontransitionReynoldsNumber2023/1/111620thcenturyLudwigPrandtl
(1875-1953)Boundarytheory(1904)Tobethesinglemostimportanttoolinmodernflowanalysis.ThefatherofmodernfluidmechanicsVonkarman(1881-1963)I.taylor(1886-1975)Laidfoundationforthepresentstateoftheartinfluidmechanics2023/1/11171.2TheFluidasaContinuum(连续介质)Density(密度)Elementalvolume(流体微团、流体质点)*Largeenoughinmicroscope(微观)10-9mm3ofairatstandardconditionscontainsapproximately3×107molecules.Sodensityisessentiallyapointfunctionandfluidpropertiescanbethoughtofasvaryingcontinuallyinspace.*Smallenoughinmacroscope(宏观).Mostengineeringproblemsareconcernedwithphysicaldimensionsmuchlargerthanthislimitingvolume.2023/1/1118TheelementalvolumemustbesmallenoughinmacroscopeSuchafluidiscalledacontinuum,whichsimplymeansthatitsvariationinpropertiesissosmooththatthedifferentialcalculuscanbeusedtoanalyzethesubstance.2023/1/11191.3SomePropertiesoffluids1.viscosity(粘性)*Definition:Whenafluidissheared(剪切),itbeginstomove.Subsequently,apairofforcesappearontheshearsurface,whichresiststheshearmotionofthefluid.Thisiscalled
viscosityThisresistantforceis
shearstress.(剪切应力,内摩擦应力)Infact,thisshearmotionofafluidisakindofdeformation(变形)*Thenatureofviscosity:Forliquidiscohesion(结合)(movie)Forgasisthetransportofmomentum(动量输运)(movie)2023/1/1120m:Coefficientofviscosity(粘性系数)[FT/L2]n=m/r:Kinematicviscosity(运动学粘性系数)[L2/T]Velocitygradient*Newtonianlawofviscosity(牛顿粘性定律,牛顿内摩擦定律)UUu(y)xyShearstressThelinearfluid,whichfollowNewtonianresistancelaw,iscalledNewtonianflow.(牛顿流动、牛顿流体)Thevelocitygradientisinfactakindofdeformation.Realfluid(Viscous),Idealfluid(Inviscid&Frictionless)2023/1/11212.Compressibility(压缩性)Incompressible(不可压):r=constMostliquidflowsaretreatedasincompressible.Only1percentincreaseifpressureincreaseby220Compressible(可压缩):
r=r(P.T)Gasescanalsobetreatedasincompressiblewhentheirvelocityislessthan0.3Manumbers3.StateRelationsforGasesPerfect-gasLaw(理想气体状态方程)2023/1/11224.ThermalConductivity(热传导)
:
heatfluxinndirectionperunitareak:coefficientofthermalconductivityT:temperaturen:directionofheattransferFourier’slawofheatconduction2023/1/11231.4Twodifferentpointsofviewinanalyzingproblemsinmechanics*TheEulerianview(欧拉观点)andtheLagrangianview(拉格朗日观点)TheEulerianviewisconcernedwiththefieldofflow,appropriatetofluidmechanics.TheLagrangian
viewfollowsanindividualparticlemovingthoughtheflow,appropriatetosolidmechanics.Thecontrastoftwoframes2023/1/1124*Flowclassification(流动分类)AccordingtoEulerianview,anypropertyisfunctionofcoordinates(space)andtime.InCartesiansystem(直角坐标系),itcanbeexpressedasf(x,y,z,t)x,y,z,t:Eulerianvariablecomponent(欧拉变数)f:Functionofonlyonecoordinatecomponent,one-dimensional
(一维
1-D).Inthelikemanner,two-dimensional(二维2-D)
,three-dimensional
(三维
3-D)
:Functionoftime~~unsteady
(非定常)Otherwisesteady(定常)2023/1/1125OneTwodimensionalThreeSteadyUnsteadyCompressibleIncompressibleViscousInviscid2023/1/11261.5Streamline(流线),Pathline(迹线)&Flowfield(流场)*Whatisastreamline
Astreamlineisthelineeverywheretangenttothevelocityvectoratagiveninstant.2023/1/1127
A
pathlineistheactualpathtraversedbyagivenfluidparticles.Forsteadyflow:Streamline=Pathline*WhatisapathlinePathlinesinsteadyflowPathlinesinunsteadyflow2023/1/1128FlowPattern(流型、流普、流线族)Streamsurface(流面)&Streamtube(流管)Flowpattern:asetofstreamlinesStreamsurface:acollectionofallthestreamlinespassingthroughalinewhichisnotastreamline.Streamlinecannotintersect(相交),exceptforsingularitypoint(奇点)Streamtube:aclosedcollectionofstreamlines.Noflowacrossstreamtubewalls2023/1/1129Flowfield(流场)
:Inagivenflowsituation,thepropertiesofthefluidarefunctionsofpositionandtime,namelyspace-timedistributionsofthefluidproperties.2023/1/1130Streamlineequation(流线方程)ds->Infinitesimal(无穷小)dydxds2023/1/1131Example:Giventhesteadytwo-dimensionalvelocitydistributionu=kx,v=-ky,w=0,wherekisapositiveconstant.Computeandplotthestreamlinesoftheflow,includingdirection.Solution:
Sincetime(t)doesnotappearexplicitly,themotionissteady,sothatstreamlines,pathlineswillcoincide.Sincew=0,themotionistwo-dimensional.Integrating:Hyperbolas(双曲线)2023/1/1132Direction:
u=kx,v=-ky
QuadrantI(第一象限)(x>0,y>0)u>0,v<0
Atthepointo:u=v=0Singularitypoint,(汇)xyo2023/1/11331.5Surfaceforce(表面力)andbodyforce(质量力,体积力)Surfaceforceactscontinuouslyonthesidesurfacesoffluidelements.Pressure,friction.Contactsurfaceforceperunitarea(单位面积)(应力)Bodyforceactsontheentiremassoftheelement.Gravity,electromagnetic.NocotactPerunitmass(单位质量)g2023/1/1134Homework1.Giventhevelocitydistribution:u=-cy,v=cx,w=0Wherecisapositiveconstant.Computeandplotthestreamlinesoftheflow.2.Givenvelocitydistribution:u=x+t,v=-y+t,w=0(tistime)Findthestreamlinepassingthroughpoint(-1,-1)attheinstantt=0.35White: Chapter2潘锦珊: 第一章Chapter2
PressureDistribution
inafluid
(FluidStatics
Basic)36Definition:Unit:(SI)(PoundperSquireInch)Verticaltothesurfaceandpointintoit.Atanypoint,pressureisindependentoforientation.PropertiesofPressurePressure37Atanypointinastaticfluid,pressureisindependentoforientation.Verification:When(up)Forcesonleftandupsurface:38FluidMechanicsAerodynamicsFluidatrestFluidStaticsFluidDynamicsFluidinmotion39Pressureistheonlysurfaceforce.Pressuredistributionrelatestobodyforceonly.Dams(水坝)Buoyancyrelatedinstrument(利用浮力的装置)
Fluidpowersystem(液压驱动系统)Connectedvessel(连通器)……Applications:§2.1Fluid@rest40Consideracubeinastaticfluid Pressureatthecenterisp; Bodyforcesaredxdydz§2.2EquilibriumofaFluidElement41dxdydzdxdydzPressure:Bodyforce:42Inxdirection:ForceonleftsurfaceForceonrightsurfaceBodyforceinxdirectionEulerEquilibriumEquations(Euler1775)43Pressureincreaseinthedirectionofbodyforce.Surfacesinfluidwithsamepressure,verticaltobodyforceeverywhere,ingravityfielditisahorizontalplane.Equipressuresurface(等压面)44xzzhz0p01Basicrule:Generalsolution2Boundarycondition:§2.3
PressureDistributionunderGravity45PressureatfreesurfacePressureduetoweightontopAnypointwiththesamedepthhunderfreesurfacehasthesamepressure.equipressuresurface(等压面)Freesurfaceisanequipressuresurface46p0Watermanometer(水柱压力计)phPressuresourceConnectedwatertubeApplication?Absolutepressure(绝对压力)Relativepressure(相对压力)Gaugepressure(表压力)Vacuumdegree(真空度)Pressuremeasurementh(mmH2O)h+p0
(mmH2O)pA绝压pG表压47P2.7Homework:48Centroid(形心,重心)hcycChyxAαyxp0FindtotalforceP§2.4HydrostaticForceonPlaneSurface49hc:
depthofcentroidTheforceonasubmergedplaneequalsthepressureattheplatecentertimestheplatearea,independentoftheshapeoftheplateortheangle.CenterofpressureIsthecenterofpressureatcentroid?hcycChdydDhyxAαyxp050hcycChdydDhyxAαyxp0Momenttoxaxis51ExampleThegateis5mwide,ishingedatpointB,andrestagainstasmoothwallatpointA.FindTheforceonthegateexertedbyseawaterpressure,ThehorizontalforcePxexertedbythewallatpointA52(a)Centroid:3maboveBSolution:(b)LcL53HooverDamChannel
SelectadAandfindthethreeforcesonitIntegration§2.5HydrostaticForcesonCurvedSurfaces54Conclusion:x1.Horizontalforces:xOzAAx2.Verticalforces:OzV55Example:Findtheforcesactingonthehemi-sphericalcovers.RFOxyH45oSolution:56§2.6.1UniformLinearAcceleration(恒加速度直线运动)aX=-agxGravityBodyforceInertiaForce§2.6Fluidinrigidbodymotion57Boundarycondition:Atfreesurface(自由液面)Equipressuresurface(等压面)EulerEquilibriumEquations58Acupofcoffeeis7cmdeepatrest.1.Whetheritwillspilloutwhileax=7m/s2?2.GagepressureofpointA?Example:Solution:Itwillnotspillout!59§2.6.2Rigidbodyrotation(整体旋转)gω2rzfOω2yωxyROfω2xryxθBodyforce:Equipressuresurface:dp=060Paraboladish(抛物面)Freesurface:gω2rzfOz0Howtofindz0?旋转抛物面体的体积是同底面积和高的圆柱体积的一半。61P2.64P2.97(selective) P2.147P2.152Homework:3.1Systems(体系)versusControlVolumes
(控制体)
System:anarbitraryquantityofmassoffixedidentity.
Everythingexternaltothissystemisdenotedbythetermsurroundings,andthesystemisseparatedfromitssurroundingsbyit‘sboundariesthroughwhichnomassacross.(Lagrange拉格朗日)Chapter3IntegralRelations(积分关系式)
foraControlVolumeinOne-dimensionalSteadyFlows
ControlVolume(CV):
In
theneighborhoodofourproductthefluidformstheenvironmentwhoseeffectonourproductwewishtoknow.Thisspecificregioniscalledcontrolvolume,withopenboundariesthroughwhichmass,momentumandenergyareallowedtoacross.(Euler欧拉)FixedCV,movingCV,deformingCV3.2BasicPhysicalLawsofFluidMechanicsAllthelawsofmechanicsarewrittenforasystem,whichstatewhathappenswhenthereisaninteractionbetweenthesystemandit’ssurroundings.IfmisthemassofthesystemConservationofmass(质量守恒)Newton’ssecondlawAngularmomentumFirstlawofthermodynamic
Itisrarethatwewishtofollowtheultimatepathofaspecificparticleoffluid.Insteaditislikelythatthefluidformstheenvironmentwhoseeffectonourproductwewishtoknow,suchashowanairplaneisaffectedbythesurroundingair,howashipisaffectedbythesurroundingwater.Thisrequiresthatthebasiclawsberewrittentoapplytoaspecificregionintheneighboredofourproductnamelyacontrolvolume(CV).TheboundaryoftheCViscalledcontrolsurface(CS)BasicLawsforsystemforCV3.3TheReynoldsTransportTheorem(RTT)雷诺输运定理1122isCV.1*1*2*2*issystemwhichoccupiestheCVatinstantt.:Theamountofperunitmass
ThetotalamountofintheCVis:t+dtt+dttts:anypropertyoffluidt+dtt+dtttsInthelikemanner
s1-Dflow
:
isonlythefunctionofs.Forsteadyflow:t+dtt+dtttdsRTTIfthereareseveralone-Dinletsandoutlets:Steady,1-Donlyininletsandoutlets,nomatterhowtheflowiswithintheCV.3.3Conservationofmass(质量守恒)(ContinuityEquation)f=mb=dm/dm=1Massflux(质量流量)Forincompressibleflow:体积流量LeonardodaVinciin1500Ifonlyoneinletandoneoutlet
壶口瀑布是我国著名的第二大瀑布。两百多米宽的黄河河面,突然紧缩为50米左右,跌入30多米的壶形峡谷。入壶之水,奔腾咆哮,势如奔马,浪声震天,声闻十里。“黄河之水天上来”之惊心动魄的景观。
Example:Ajetengineworkingatdesigncondition.AttheinletofthenozzleAttheoutletPleasefindthemassfluxandvelocityattheoutlet.GivengasconstantT1=865K,V1=288m/s,A1=0.19㎡;
T2=766K,A2=0.1538㎡
R=287.4J/kg.K。
SolutionAccordingtotheconservationofmassHomework:P185P3.12,P189P3.36
3.4TheLinearMomentumEquation(动量方程)
(Newton’sSecondLaw
)Newton’ssecondlaw:NetforceonthesystemorCV(体系或控制体受到的合外力):Momentumflux(动量流量)1-Din&outsteadyRTTFfluxForonlyoneinletandoneoutletAccordingtocontinuity2-out,1-inExample:Afixedcontrolvolumeofastreamtubeinsteadyflowhasauniforminlet(r1,A1,V1)andauniformexit(r2,A2,V2).Findthenetforceonthecontrolvolume.Solution:Neglecttheweightofthefluid.Findtheforceonthewaterbytheelbowpipe.Example:1212Solution:selectcoordinate,controlvolumeInthelikemannerFindtheforcetofixtheelbow.Solution:coordinate,CVNetforceonthecontrolvolume:WhereFexistheforceontheCVbypipe,(onelbow)12FexSurfaceforce:(1)Forcesexposedbycuttingthoughsolidbodieswhichprotrudeintothesurface.(2)Pressure,viscousstress.AfixedvaneturnsawaterjetofareaAthroughanangleqwithoutchangingitsvelocitymagnitude.Theflowissteady,pressurepaiseverywhere,andfrictiononthevaneisnegligible.FindtheforceFappliedtovane.AwaterjetofvelocityVjimpingesnormaltoaflatplatewhichmovestotherightatvelocityVc.Findtheforcerequiredtokeeptheplatemovingatconstantvelocityandthepowerdeliveredtothecartifthejetdensityis1000kg/m3thejetareais3cm2,andVj=20m/s,Vc=15m/sNeglecttheweightofthejetandplate,andassumesteadyflowwithrespecttothemovingplatewiththejetsplittingintoanequalupwardanddownwardhalf-jet.Homework:P190-p3.46P191-p3.50P192-p3.54P192-p3.58Derivethethrust(推力)equationforthejetengine.airdragisneglectSolution::massfluxoffuelxBalancewiththrustCoordinate,CV
Example:Inagroundtestofajetengine,pa=1.0133×105N/m2,Ae=0.1543m2,Pe=1.141×105N/m2,Ve=542m/s,.Findthethrustforce.Solution:F16R=65.38KNxcoordinateArocketmovingstraightup.LettheinitialmassbeM0,andassumeasteadyexhaustmassflowandexhaustvelocityverelativetotherocket.Iftheflowpatternwithintherocketmotorissteadyandairdragisneglect.Derivethedifferentialequationofverticalrocketmotionv(t)andintegrateusingtheinitialconditionv=0att=0.Example:Solution:TheCVenclosetherocket,cutsthroughtheexitjet,andacceleratesupwardatrocketspeedv(t).coordinatezv(t)Z-momentumequation:v(t)z3.5TheAngular-MomentumEquation(Angular-Momentum):Netmoment(合力矩)Example:Centrifugal(离心)pumpThevelocityofthefluidischangedfromv1tov2anditspressurefromp1top2.Find(a).anexpressionforthetorqueT0whichmustbeappliedthosebladestomaintainthisflow.(b).thepowersuppliedtothepump.
blade
wForincompressibleflow1-DContinuity:Solution:TheCVischosen.blade
w
PressurehasnocontributiontothetorquearebladerotationalspeedsWorkonperunitmassHomework:P192-p3.55;P194-p3.68,p3.78;P200-p3.114,p3.116
BriefReviewBasicPhysicalLawsofFluidMechanics:TheReynoldsTransportTheorem:TheLinearMomentumEquation:TheAngular-MomentumTheorem:ConservationofMass:ReviewofFluidStaticsEspecially:
Question
Whenfluidflowing…
Bernoulli(1700~1782)Whatrelationsarethereinvelocity,heightandpressure?SeveralTragediesinHistory:
Alittlerailwaystationin19thRussia.The‘Olimpic’shipwreckinthePacificThebumpingaccidentofB-52bomberoftheU.S.airforcein1960s.3.6FrictionlessFlow:
TheBernoulliEquation1.DifferentialFormofLinearMomentumEquationElementalfixedstreamtubeCVofvariableareaA(s),andlengthds.Linearmomentumrelationinthestreamwisedirection:one-D,steady,frictionlessflowForincompressibleflow,r=const.Integralbetweenanypoints1and2onthestreamline:AQuestion:
IstheBernoulliequationamomentumorenergyequation?Hydraulicandenergygradelinesforfrictionlessflowinaduct.Example1:Findarelationbetweennozzledischargevelocityandtankfree-surfaceheighth.Assumesteadyfrictionlessflow.1,2maximuminformationisknownordesired.h12V2Solution:h12V2Continuity:Bernoulli:Torricelli1644AccordingtotheBernoulliequation,thevelocityofafluidflowingthroughaholeinthesideofanopentankorreservoirisproportionaltothesquarerootofthedepthoffluidabovethehole.Thevelocityofajetofwaterfromanopenpopbottlecontainingfourholesisclearlyrelatedtothedepthofwaterabovethehole.Thegreaterthedepth,thehigherthevelocity.ReviewofBernoulliequationThedimensionsofabovethreeitemsarethesameoflength!Example1:Findarelationbetweennozzledischargevelocityandtankfree-surfaceheighth.Assumesteadyfrictionlessflow.V2h12
Example2:Findvelocityintherighttube.hABInlikemanner:VExample3:FindvelocityintheVenturitube.12AsafluidflowsthroughaVenturitube,thepressureisreducedinaccordancewiththecontinuityandBernoulliequations.Example4:Estimaterequiredtokeeptheplateinabalancestate.(Assumetheflowissteadyandfrictionless.)Solution:Forplate,bylinealmomentumequation,byBernoulliequation,Example5:Firehose,Q=1.5m3/minFindtheforceonthebolts.1122Solution:Bycontinuity:ByBernoulli:1122Bymomentum:Example6:Findtheaero-forceontheblade (cascade).ABDCSSSolution:ABDCSSBycontinuity,叶片越弯,做功量越大。ABDCSSByBernoulli,BernoulliEquationforcompressibleflowSpecific-heatratioForisentropicflow:GasWeightneglectFornozzle:Fordiffuser:ExtendedBernoulliEquationForcompressor
多变压缩功Forturbine
多变膨胀功Homework!Page206:P3.158,P3.161Page207:P3.164,P3.165《气体动力学》第二章习题第一部分:Page2033题Reviewofexamples:V12AnalysisChooseyourcontrolvolumnBodyforceandSurfaceforceSolution1122xFindtheaero-forceontheblade (cascade).叶片越弯,做功量越大。ABDCSSByBernoulli,3.7TheEnergyEquation
ConservationofEnergyVarioustypesofenergyoccurinflowingfluids.Workmustbedoneonthedeviceshowntoturnitoverbecausethesystemgainspotentialenergyastheheavy(dark)liquidisraisedabovethelight(clear)liquid.Thispotentialenergyisconvertedintokineticenergywhichiseitherdissipatedduetofrictionasthefluidflowsdownramporisconvertedintopowerbytheturbineanddissipatedbyfriction.Thefluidfinallybecomesstationaryagain.Theinitialworkdoneinturningitovereventuallyresultsinaveryslightincreaseinthesystemtemperature.
EnergyPerUnitMass1122eFirstLawsofThermodynamicsConservationofEnergy1122Theenergyequation!Example:Asteadyflowmachinetakesinairatsection1anddischargeditatsection2and3.Thepropertiesateachsectionareasfollows:sectionA,Q,T,P,PaZ,m10.042.82110000.320.091.13814401.230.021.4100?0.4CV(1)(2)(3)110KWWorkisprovidedtothemachineattherateof110kw.Findthepressure(abs)andtheheattransfer.AssumethatairisaperfectgaswithR=287,Cp=1005.Solution:Massconservation:Byenergyequation:CV(1)(2)(3)110KW124Chapter4DifferentialRelationsForViscousFlow4.1PreliminaryRemarks*
TwowaysinanalyzingfluidmotionSeekinganestimateofgrosseffectsoverafiniteregionorcontrolvolume.
Integral
(2)Seekingthepoint-by-pointdetailsofaflowpatternbyanalyzinganinfinitesimalregionoftheflow.
Differential125TurbulentFlow
VS.
LaminarFlow*
TwoformsofflowTurbulent(湍,紊)flow,laminar(层)flow*
ViscousflowViscosityisinherentnatureofrealfluid.Strain(剪切)isverystrongininternalflow.TransitionReynolds
numberOsbroneReynoldsReynoldstank惯性力/粘性力1264.2TheAccelerationFieldofaFluidLocalaccelerationunsteadyConvectiveaccelerationnonuniformNonlinearterms127InthelikemannerAnypropertyΦSubstantial(Material)derivative随体(物质、全)导数128ExampleGiven.Findtheaccelerationofaparticle.129Xinlet(massflow)XoutletdxyzxdzdyInfinitesimalfixedCVXflowout4.3DifferentialEquationofMassConservationInthelikemanner
FlowoutofftheCV130LossofmassintheCV131ForsteadyflowForincompressibleflowExample1Underwhatconditionsdoesthevelocityfieldrepresentsanincompressibleflowwhichconservesmass?(where)132SolutionContinuityforincompressibleflowExample2Anincompressiblevelocityfield:u=a(x2-y2),w=b,a,bareconst,whatv=?SolutionAnarbitraryfunctionofx,z,t133Assignment:P264:P4.1(a),P4.2,P4.4,P4.9(a)134Newton’ssecondlaw4.4DifferentialEquationofLinearMomentumdxdzdyElementalvolumeWhatarethesurfaceforcesFs
ontheelementalvolume?135Surfaceforceonanelementalvolume:dxdzdyVectorSumSurfacestressNetSurfaceForce:136MomentumequationInthelikemannerItisnotthesestressesbuttheirgradient,whichcauseanetforceonthedifferentialvolume.137Tensor
张量138ConstitutiveRelation
本构Newton’sLaw(广义牛顿内摩擦定律)
Momentumequation(角标表示法)139SubstituteNewton’sConstitutiveRelationintoMENewtonfluid,linearfluid(牛顿流体,线性流体)140N-SEquation141ForincompressibleflowForinviscidflowFor2-D,steady,incompressibleflow1421434.5TheDifferentialEquationofEnergyInfinitesimalfluidelementdxdzdyThefirstthermodynamiclaw144(1)Thermalconductivity(2)othersX:HeatflowdxdydzAccordingFourier’sLaw:145质量力做功和表面力做功Bodyforce146SurfaceforcedxdydzX:X:NetpowerY,Z147NetpowerbyFsleft148单位体积内能变化率热传导等传热变型时表面应力做功149变型时表面应力做功压力做膨胀功粘性耗散Φ>0由连续方程:根据热力学公式,熵s、焓h和压强p、密度ρ的关系为:150已知Dû=CvDT,Dh=CpDT151SummaryoftheEquations152153154equationunknownvariablescontinuity1r,u,v,wmomentum3p,ru,v,wenergy1p,ru,v,w,Tperfectgas1p,r,TToSolveAFlow…1554.6Initial(初始)andBoundary(边界)ConditionsfortheBasicEquationsInitialConditions:t=t0
:BoundaryConditions:(Noslip)VelocityWallIfthewallisstationaryTemperature156DuetothehighlycomplexoftheN-Sequations,onlyafewparticularsolutionswerefounduptonow.Formostproblems,theequationsmustbesolvednumerically,whichisabrandnewcoursecalledCFD(ComputationalFluidDynamics)
Flowpassacylinder
Anexperimentresult
AcomputationresultSolvingtheN-Sequationsnumerically157xyohhUFlowbetweentwoparallelwalls,Steady,incompressible,neglectbodyforce,2-DContinuity:Momentum:4.7
ExactsolutionsofN-SEquations158=constantIntegraterelativetoyBoundarycondition:xyohhU159Applytheboundaryconditionxyoh-hu(y)Uxyoh-hWhenU=0PoiseuilleflowWhenSimpleCouetteflow160WhenWhenConsideraspecialcaseGeneralcase:yxoUxyoUxoyU161Q=0:yxoVolumeflowrateQ=u*dy162Thewallshearstresses1634.8DynamicalSimilarity&NondimensionalizationFlowpassacylinder
D=5cm
D=10cmMeasurementforWingtipvortex164N-Sequation,2-D,steady,nobodyforce,incompressibleUseU,LasreferencevelocityandlengthDimensionlessquantitiesxdirection:4.8.1NondimensionalizationofN-SEquation165Boundaryconditionsneedtobenormalizedtoo…166Forsteady,incompressible,nobodyforceflow,iftwogeometricallysimilarflowfieldshassameReynoldsnumber,thentheyhavesimilarflowstructurewhensameboundaryconditionsareprovided.WhyReynoldsnumber?167Inertiaforce/viscousforce两个铁球同时落地?168Flowpassacylinder
D=5cm
D=10cmFlowpassasquare
Re=50
Re=10000Theflowfieldsfortwoobjectsofthesameshapebutdifferentsizearesaidtobegeometricallysimilar.If,inaddition,theReynoldsnumberarethesame,thetwoflowsaresaidtobedynamicallysimilar,sincetheratioofrelevantforcesarethesameinthetwocases.4.8.2D
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024江苏皋开投资发展集团有限公司招聘拟录用人员笔试参考题库附带答案详解
- 线粒体移植延缓衰老的表观遗传证据论文
- 2025年调酒师职业资格考试模拟题库全攻略解析与实战技巧
- 2025年调酒师职业技能大赛模拟试题与实战技巧
- 2025年护士执业资格考试题库(外科护理学专项)护理伦理案例分析
- 2025年乡村医生考试题库:农村传染病防治健康教育策略试题
- 2025年征信考试题库(个人征信基础)权威解读与试题汇编
- 2025年中学教师资格《综合素质》易错易混题型练习试卷
- 2025年注册会计师考试《会计》特殊业务会计处理经典题型实战案例解析模拟试题
- 2025化工原料省间调拨合同
- 2024年四川省南充市中考英语试卷真题(含官方答案及解析)
- 举一反三四年级奥数-第19周-解决问题(二)
- Unit7词汇表讲解2024-2025学年牛津译林版英语七年级上册
- 城市商业综合体运营管理方案
- 十八项医疗核心制度解读课件
- 一年级数学口算题专项练习(800道)-100以内加减法
- 2024年云南省红河州中考二模考试道德与法治试题
- 19.1.1 变量与常量(教学设计)
- 剪叉式升降工作平台作业专项施工方案24
- 山东省济南市槐荫区2023-2024学年八年级下学期期中考试数学试题(含答案)
- 《模拟导游》课件-2.10气象景观导游要领
评论
0/150
提交评论