版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
本文格式为Word版,下载可任意编辑——初三上册数学期中试题及答案学业的精深造诣来源于勤奋好学,只有好学者,才能在无边的学识海洋里猎取到真智才学,只有真正勤奋的人才能抑制困难,持之以恒,不断开拓学识的领域,武装自己的头脑,成为自己的主宰,让我们勤奋学习,持之以恒,成就自己的人生,让自己的青春写满无悔!我搜集的《初三上册数学期中试题及答案》,梦想对同学们有扶助。
一、选择题每题3分,共30分
1.已知x=2是一元二次方程m-2x2+4x-m2=0的一个根,那么m的值为C
A.2B.0或2C.0或4D.0
2.2022葫芦岛以下一元二次方程中有两个相等实数根的是D
A.2x2-6x+1=0B.3x2-x-5=0C.x2+x=0D.x2-4x+4=0
3.2022玉林模拟关于x的一元二次方程x2-4x-m2=0有两个实数根x1,x2,那么m21x1+1x2=D
A.m44B.-m44C.4D.-4
4.若抛物线y=x-m2+m+1的顶点在第一象限,那么m的取值范围为B
A.m>2B.m>0C.m>-1D.-1<m<0
5.如图,在长70m,宽40m的矩形花园中,欲修宽度相等的参观路阴影片面,要使参观路面积占总面积的18,那么路宽x应得志的方程是B
A.40-x70-x=350
B.40-2x70-3x=2450
C.40-2x70-3x=350
D.40-x70-x=2450
6.把二次函数y=12x2+3x+52的图象向右平移2个单位后,再向上平移3个单位,所得的函数图象的顶点是C
A.-5,1B.1,-5C.-1,1D.-1,3
7.已知点A-3,y1,B2,y2,C3,y3在抛物线y=2x2-4x+c上,那么y1,y2,y3的大小关系是B
A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y2>y3>y1
8.若抛物线y=x2-2x+c与y轴的交点为0,-3,那么以下说法不正确的是C
A.抛物线开口向上B.抛物线的对称轴是直线x=1
C.当x=1时,y的值为-4D.抛物线与x轴的交点为-1,0,3,0
9.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是C
10.2022达州如图,已知二次函数y=ax2+bx+ca≠0的图象与x轴交于点A-1,0,与y轴的交点B在0,-2和0,-1之间不包括这两点,对称轴为直线x=1.以下结论:①abc>0;②4a+2b+c>0;③4ac-b2<8a;④13c.其中正确的是D
A.①③B.①③④C.②④⑤D.①③④⑤
二、填空题每题3分,共24分
11.方程2x2-1=3x的二次项系数是__2__,一次项系数是__-3__,常数项是__-1__.
12.把二次函数y=x2-12x化为形如y=ax-h2+k的形式为__y=x-62-36__.
13.已知抛物线y=ax2+bx+c过-1,1和5,1两点,那么该抛物线的对称轴是直线__x=2__.
14.已知整数k<5,若△ABC的边长均得志关于x的方程x2-3kx+8=0,那么△ABC的周长是__6或12或10__.
15.与抛物线y=x2-4x+3关于y轴对称的抛物线的解析式为__y=x2+4x+3__.
16.已知实数m,n得志3m2+6m-5=0,3n2+6n-5=0,且m≠n,那么nm+mn=__-225__.
17.如图,四边形ABCD是矩形,A,B两点在x轴的正半轴上,C,D两点在抛物线y=-x2+6x上,设OA=m0<m<3,矩形ABCD的周长为l,那么l与m的函数解析式为__l=-2m2+8m+12__.
18.如图,在水平地面点A处有一网球放射器向空中放射网球,网球飞行路线是一条抛物线,
在地面上落点为B,有人在直线AB上点C靠点B一侧竖直向上摆放若干个无盖的圆柱形桶.试图让网球落入桶内,已知AB=4米,AC=3米,网球飞行高度OM=5米,圆柱形桶的直径为0.5米,高为0.3米网球的体积和圆柱形桶的厚度疏忽不计.当竖直摆放圆柱形桶至少__8__个时,网球可以落入桶内.
三、解答题共66分
19.8分用适当的方法解方程:
1x2-4x+2=0;22x-12=x3x+2-7.
解:x1=2+2,x2=2-2解:x1=2,x2=4
20.6分如图,已知抛物线y1=-2x2+2与直线y2=2x+2交于A,B两点.
1求A,B两点的坐标;
2若y1>y2,请直接写出x的取值范围.
解:1A-1,0,B0,2
2-1<x<0
21.7分已知关于x的一元二次方程x2-2k+1x+k2+k=0.
1求证:方程有两个不相等的实数根;
2若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求k的值.
解:1∵Δ=2k+12-4k2+k=1>0,∴方程有两个不相等的实数根
2一元二次方程x2-2k+1x+k2+k=0的解为x1=k,x2=k+1,当AB=k,AC=k+1,且AB=BC时,△ABC是等腰三角形,那么k=5;当AB=k,AC=k+1,且AC=BC时,△ABC是等腰三角形,那么k+1=5,解得k=4,所以k的值为5或4
22.7分已知抛物线y=ax2+bx+c与x轴交于点A1,0,B3,0,且过点C0,-3.
1求抛物线的解析式和顶点坐标;
2请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=-x上,并写出平移后抛物线的解析式.
解:1抛物线解析式为y=-x2+4x-3,即y=-x-22+1,∴顶点坐标2,12先向左平移2个单位,再向下平移1个单位,得到的抛物线的解析式为y=-x2,平移后抛物线的顶点为0,0落在直线y=-x上
23.8分2016济宁某地2014年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2016年在2014年的根基上增加投入资金1600万元.
1从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?
2在2016年异地安置的概括实施中,该地筹划投入资金不低于500万元用于优先搬迁租房赏赐,规定前1000户含第1000户每户每天赏赐8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房赏赐?
解:1设该地投入异地安置资金的年平均增长率为x,根据题意得12801+x2=1280+1600,解得x1=0.5,x2=-2.5舍去,那么所求年平均增长率为50%
2设今年该地有a户享受到优先搬迁租房赏赐,根据题意得1000×8×400+a-1000×5×400≥5000000,解得a≥1900,那么今年该地至少有1900户享受到优先搬迁租房赏赐
24.8分如图,已知二次函数经过点B3,0,C0,3,D4,-5.
1求抛物线的解析式;
2求△ABC的面积;
3若P是抛物线上一点,且S△ABP=12S△ABC,这样的点P有几个?请直接写出它们的坐标.
解:1y=-x2+2x+3
2由题意得-x2+2x+3=0,解得x1=-1,x2=3,∴A-1,0,∵AB=4,OC=3,∴S△ABC=12×4×3=63点P有4个,坐标为2+102,32,2-102,32,2+222,-32,2-222,-32
25.10分大学毕业生小王响应国家“自主创业”的号召,利用银行小额无息贷款开办了一家饰品店,该店购进一种今年新上市的饰品举行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件,为了获得更大的利润,现将饰品售价调整为60+x元/件x>0即售价上涨,x<0即售价下降,每月饰品销量为y件,月利润为w元.
1直接写出y与x之间的函数解析式;
2如何确定销售价格才能使月利润?求月利润;
3为了使每月利润不少于6000元应如何操纵销售价格?
解:1由题意可得y=300-10x(0≤x≤30)300-20x(-20≤x<0)
2由题意可得w=(20+x)(300-10x)(0≤x≤30),(20+x)(300-20x)(-20≤x<0),即w=-10(x-5)2+6250(0≤x≤30),-20(x+52)2+6125(-20≤x<0),由题意可知x应取整数,故-20≤x<0中,当x=-2或x=-3时,w=6120;0≤x≤30中,当x=5时,w=6250,故当销售价格为65元时,利润,利润为6250元3由题意w≥6000,令w=6000,即6000=-10x-52+6250,6000=-20x+522+6125,解得x1=10,x2=0,x3=-5,∴-5≤x≤10,故将销售价格操纵在55元到70元之间含55元和70元才能使每月利润不少于6000元
26.12分如图,在平面直角坐标系xOy中,A,B为x轴上两点,C,D为y轴上的两点,经过点A,C,B的抛物线的一片面C1与经过点A,D,B的抛物线的一片面C2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C的坐标为0,-32,点M是抛物线C2:y=mx2-2mx-3mm<0的顶点.
1求A,B两点的坐标;
2“蛋线”在第四象限上是否存在一点P,使得△PBC的面积?若存在,求出△PBC面积的值;若不存在,请说明理由;
3当△BDM为直角三角形时,求m的值.
解:1y=mx2-2mx-3m=mx-3x+1,∵m≠0,∴当y=0时,x1=-1,x2=3,∴A-1,0,B3,0
2C1:y=12x2-x-32.如图,过点P作PQ∥y轴,交BC于Q,由B,C的坐标可得直线BC的解析式为y=12x-32.设Px,12x2-x-32,那么Qx,12x-32,PQ=12x-32-12x2-x-32=-12x2+32x,S△PBC=12PQOB=12×-12x2+32x×3=-34x-322+2716,
当x=32时,S△PBC有值,S=2716,此时12×322-32-32=-158,∴P32,-158
3y=mx2-2mx-3m=mx-12-4m,顶点M的坐标为1,-4m.当x=0时,y=-3m,∴D0,-3m.又B3,0,∴DM2=0-12+-3m+4m2=m2+1,MB2=3-12+0+4m2=16m2+4,BD2=3-02+0+3m2=9m2+9.当△BDM为直角三角形时,有DM2+BD2=MB2或DM2+MB2=BD2,①DM2+BD2=MB2时,有m2+1+9m2+9=16m2+4,解得m=-1∵m<0,∴m=1舍去;②DM2+MB2=BD2时,有m2+1+16m2+4=9m2+9,解得m=-22m=22舍去.综上,m=-1或-22时,△BDM为直角三角形
一、选择题(每题3分,共18分)
1.一元二次方程x(x﹣1)=0的根是()
A.1B.0C.0或1D.0或﹣1
2.已知⊙O的半径为10,圆心O到直线l的距离为6,那么反映直线l与⊙O的位置关系的图形是()
A.B.C.D.
3.某款手机连续两次降价,售价由原来的1185元降到580元.设平均每次降价的百分率为x,那么依题意列出的方程为()
A.1185x2=580B.1185(1﹣x)2=580C.1185(1﹣x2)=580D.580(1+x)2=1185
4.如图,⊙O为△ABC的外接圆,∠A=30°,BC=6,那么⊙O的半径为()
A.6B.9C.10D.12
5.边长分别为5、5、6的三角形的内切圆的半径为()
A.B.C.D.
6.在Rt△ABC中,∠ACB=90°,CD是△ABC的高,E是AC的中点,ED、CB的延长线相交于点F,那么图中好像三角形有()
A.3对B.4对C.5对D.6对
二、填空题:(每题3分,共30分)
7.已知,那么=.
8.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,那么∠B′等于.
9.已知是一元二次方程x2﹣2x﹣1=0的两根,那么=.
10.如图,一个正n边形纸片被撕掉了一片面,已知它的中心角是40°,那么n=.
11.已知75°的圆心角所对的弧长为5,那么这条弧所在圆的半径为.
12.已知点C是AB的黄金分割点(AC<BC),AB=4,那么BC的长为.(留存根号)
13.圆锥的底面的半径为3,母线长为5,那么圆锥的侧面积为.
14.如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F,∠A=50°,那么∠E+∠F=.
15.如图,P为⊙O外一点,PA与⊙O相切于点A,PO交⊙O于点B,BC⊥OP交PA于点C,BC=3,PB=4,那么⊙O的半径为.
16.已知Rt△ABC中,∠ACB=90°,中线BD、CE交于G点,∠BGC=90°,CG=2,那么BC=.
三、解答题:(共102分)
17.(此题总分值10分)
解方程:1(2)
18.(此题总分值8分)
已知,关于x的方程x2﹣2mx+m2﹣1=0.
(1)不解方程,判断此方程根的处境;
(2)若x=2是该方程的一个根,求代数式的值.
19.(此题总分值8分)
如下图的网格中,每个小方格都是边长为1的正方形,B点的坐标为(﹣1,﹣1).
(1)把格点△ABC绕点B按逆时针方向旋转90°后得到△A1BC1,请画出△A1BC1,并写出点A1的坐标;
(2)以点A为位似中心放大△ABC,得到△AB2C2,使放大前后的面积之比为1:4请在下面网格内画出△AB2C2.
20.(此题总分值10分)
如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.
(1)求BD的长;
(2)求图中阴影片面的面积.
21.(此题总分值10分)
如图,在⊙O的内接四边形ABCD中,AB=AD,E在弧AD上一点.
(1)若∠C=110°,求∠E的度数;
(2)若∠E=∠C,求证:△ABD为等边三角形.
22.(此题总分值10分)
某商场将进货价为每只30元的台灯以每只40元售出,平均每月能售出600只.调查说明,这种台灯的售价每上涨1元,其月销售量将裁减10只.当这种台灯的售价定为多少元时,每个月的利润恰为10000元?
23.(此题总分值10分)
李华晚上在两根相距40m的路灯杆下来回漫步,已知李华身高AB=1.6m,灯柱CD=EF=8m.
(1)若李华距灯柱CD的距离DB=16m,求他的影子BQ的长.
(2)若李华的影子PB=5m,求李华距灯柱CD的距离.
24.(此题总分值10分)
已知∠ADE=∠C,AG平分∠BAC交DE于F,交BC于G.
(1)△ADF∽△ACG;(2)连接DG,若DG∥AC,,AD=6,求CE的长度.
25.(此题总分值12分)
如图,正方形ABCD中,对角线AC、BD交于点P,O为线段BP上一点不与B、P重合,以O为圆心OA为半径作⊙O交直线AD、AB于E、F.
(1)求证:点C在⊙O上;
(2)求证:DE=BF;
(3)若AB=,DE=,求BO的长度.
26.(此题总分值14分)
已知,在平面直角坐标系中,A点坐标为(0,m),B点坐标为(2,0),以A点为圆心OA为半径作⊙A,将△AOB绕B点顺时针旋转角(0°<<360°)至△A/O/B处.
(1)如图1,,=90°,求O/点的坐标及AB扫过的面积;
(2)如图2,当旋转到A、O/、A/三点在同一向线上时,求证:O/B是⊙O的切线;
(3)如图3,,在旋转过程中,当直线BO/与⊙A相交时,直接写出的范围.
2016—2017学年度第一学期期中考试
九年级数学试题参考答案
一、选择题(每题3分,共18分)
1.C2.B3.B4.A5.B6.B
二、填空题:(每题3分,共30分)
7.8.30°9.210.911.1212.13.14.80°15.616.
三、解答题:(共102分)
17.1(5分)(2)(10分)
23.(1),所以方程两个不相等的实数根;(4分)
(2)3(8分)
24.(1)如图(2分),(-4,3)(4分)(2)如图(8分)(每图2分)
25.(1);(5分)(2)(10分)
21.(1)125°(5分)(2)由于四边形ABCD是⊙O的内接四边形,所以∠BAD+∠C=180°,由于四边形ABDE是⊙O的内接四边形,所以∠ABD+∠E=180°,又由于∠E=∠C,所以∠BAD=∠ABD,所以AD=BD,(8分)
由于AB=AD,所以AD=BD=AD,所以△ABD为等边三角形.(10分)
22.设这种台灯的售价定为x元时,每个月的利润恰为10000元.
(5分)
解之得(9分)
答:这种台灯的售价定为50或80元时,每个月的利润恰为10000元(10分)
23.(1)4m(5分)(2)20m(10分)
24.(1)由于AG平分∠BAC,所以∠DAF=∠CAG,又由于∠ADE=∠C,所以△ADF∽△ACG;(5分)
(2)求到AC=15(7分)求到AE=4(9分)CE=11(10分)
25.(1)连接OC,由于正方形ABCD,所以BD垂直平分AC,所以OC=OA,所以点C在⊙O上;(4分)
(2)连接CE、CF,由于四边形AFCE是⊙O的内接四边形,所以∠BFC+∠AEC=180°,由于∠DEC+∠AEC=180°,所以∠BFC=∠DEC,由于CD=BC,∠ADC=∠FBC=90°,
所以△FBC≌△EDC,所以DE=BF;(8分)
(3)3(12分)
26.(1)(2,2)(2分)(4分)
(2)证AO/=AO即可;(10分)
(3)0°<<90°或180°<<270°(14分)
一、选择题每题3分,共30分
1.以下方程中,确定是关于x的一元二次方程的是
A.ax2+bx+c=0B.2x-x2-1=0C.x2-y-2=0D.mx2-3x=x2+2
B
试题解析:A、不是一元二次方程,故此选项错误;
B、是一元二次方程,故此选项正确;
C、不是一元二次方程,故此选项错误;
D、不是一元二次方程,故此选项错误.
应选B.
2.剪纸艺术是中华文化的瑰宝,以下剪纸图案中,既不是中心对称图形也不是轴对称图形的是
A.B.C.D.
B
3.一元二次方程x2﹣2x﹣3=0的二次项系数、一次项系数、常数项分别是
A.1,2,﹣3B.1,﹣2,3C.1,2,3D.1,﹣2,﹣3
D
一元二次方程的一般式为ax2+bx+c=0,二次项系数a,一次项系数b,常数项c,由题:x2﹣2x﹣3=0知:a=1,b=2,c=3,
应选:D.
4.在平面直角坐标系中,有A2,﹣1、B﹣1,﹣2、C2,1、D﹣2,1四点.其中,关于原点对称的两点为.
A.点A和点BB.点B和点CC.点C和点DD.点D和点A
D.
试题分析:根据关于原点对称,横纵坐标都互为相反数即可得出答案.A2,﹣1与D﹣2,1关于原点对称.
应选:D.
考点:关于原点对称的点的坐标.
5.将抛物线y=2x2平移后得到抛物线y=2x2+1,那么平移方式为
A.向左平移1个单位B.向右平移1个单位
C.向上平移1个单位D.向下平移1个单位
C
点睛:
此题测验了二次函数图象平移的相关学识.二次函数图象向上或向下平移时,应将平移量以“上加下减”的方式作为常数项添加到原解析式中;二次函数图象向左或向右平移时,应先以“左加右减”的方式将自变量x和平移量组成一个代数式,再用该代数式替换原解析式中的自变量x.要更加留神理解和记忆二次函数图象左右平移时其解析式的相关变化.
6.在数1、2、3和4中,是方程+x﹣12=0的根的为.
A.1B.2C.3D.4
C.
试题分析:解得方程后即可确定方程的根.方程左边因式分解得:x+4x﹣3=0,得到:x+4=0或x﹣3=0,解得:x=﹣4或x=3,
应选:C.
考点:一元二次方程的解.
7.若关于的一元二次方程的两个根为,,那么这个方程是
A.B.C.D.
B.
考点:根与系数的关系.
8.某经济开发区今年一月份工业产值达成80亿元,第一季度总产值为275亿元,问二、三月平均每月的增长率是多少?设平均每月的增长率为x,根据题意所列方程是
A.801+x2=275B.80+801+x+801+x2=275
C.801+x3=275D.801+x+801+x2=275
B
∵某经济开发区今年一月份工业产值达成80亿元,平均每月的增长率为x,
∴二月份的工业产值为80×1+x亿元,
∴三月份的工业产值为80×1+x×1+x=80×1+x2亿元,
∴可列方程为:80+801+x+801+x2=275,
应选B.
求平均变化率的方法:若设变化前的量为a,变化后的量为b,平均变化率为x,那么经过两次变化后的数量关系为a1±x2=b.得到第一季度总产值的等量关系是解决此题的关键.
9.如图,在Rt△ABC中,∠BAC=90°,AB=AC,将△ABP绕点A逆时针旋转后,能与△重合,假设AP=3,那么的长等于.
A.B.C.D.
A
试题分析:根据旋转图形的的性质可得:△APP′为等腰直角三角形,那么PP′=3
考点:旋转图形
10.二次函数的图像如下图,以下结论:①;②当时,y随x的增大而减小;③;④;⑤,其中正确的个数是
A.1B.2C.3D.4
B
第II卷非选择题
评卷人得分
二、填空题每题3分,共30分
11.在平面直角坐标系内,若点Aa,﹣3与点B2,b关于原点对称,那么a+b的值为.
1
试题分析:根据两个点关于原点对称时,它们的坐标符号相反可得a、b的值,进而可得a+b的值.
解:∵点Aa,﹣3与点B2,b关于原点对称,
∴a=﹣2,b=3,
∴a+b=1.
故答案为:1.
考点:关于原点对称的点的坐标.
12.已知关于x的方程x2+mx﹣6=0的一个根为2,那么这个方程的另一个根是.
﹣3
考点:根与系数的关系.
13.如下图的风车图案可以看做是由一个直角三角形通过五次旋转得到的,那么每次需要旋转的最小角度为.
72°
根据所给出的图,5个角正好构成一个周角,且5个角都相等,求出即可.
解:设每次旋转角度x°,
那么5x=360,
解得x=72,
故每次旋转角度是72°.
故答案为:72°.
14.一元二次方程x+13x-2=8的一般形式是.
3x2+x-10=0
试题分析:首先举行去括号可得:+x-2=8,那么转化成一般式可得:+x-10=0.
考点:方程的一般式
15.用配方法解方程x2﹣4x=5时,方程的两边同时加上,使得方程左边配成一个完全平方式.
4
考点:解一元二次方程-配方法
16.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到,那么∠=.
70°.
试题分析:直接根据图形旋转的性质举行解答即可.∵将△OAB绕点O逆时针旋转100°得到,∠AOB=30°,∴△OAB≌,∴∠=∠AOB=30°.∴∠=∠﹣∠AOB=70°.
故答案为:70.
考点:旋转的性质.
17.已知抛物线的顶点为1,-1,且过点2,1,求这个函数的表达式为.
试题分析:由题意可得,设抛物线的解析式为,将点代入即可求出的值,化成一般式即可.
考点:利用顶点式求抛物线解析式.
18.关于x的一元二次方程﹣x2+2k+1x+2﹣k2=0有实数根,那么k的取值范围是.
k≥
试题分析:由于已知方程有实数根,那么△≥0,由此可以建立关于k的不等式,解不等式就可以求出k的取值范围.
解:由题意知△=2k+12+42﹣k2=4k+9≥0,∴k≥.
考点:根的判别式.
19.如下图,在一块正方形空地上,修建一个正方形休闲广场,其余片面即阴影片面铺设草坪,已知休闲广场的边长是正方形空地边长的一半,草坪的面积为147m2,那么休闲广场的边长是m.
7.
试题解析:设正方形休闲广场的边长为xm,那么正方形空地的边长为2xm,根据题意列方程得,
2x2-x2=147,
解得x1=7,x2=-7不合题意,舍去;
故休闲广场的边长是7m.
考点:一元二次方程的应用.
20.二次函数y=ax2+bx+ca≠0的片面对应值如下表:
那么二次函数y=ax2+bx+c在x=2时,y=.
-8
试题解析:∵x=-3时,y=7;x=5时,y=7,
∴二次函数图象的对称轴为直线x=1,
∴x=0和x=2时的函数值相等,
∴x=2时,y=-8.
考点:二次函数图象上点的坐标特征.
评卷人得分
三、解答题共60分
21.此题6分解方程:
1用配方法解
23xx-1=2-2x用适当的方法解
12
考点:解一元二次方程
22.此题6分如下图的正方形格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答以下问题:
1将△ABC沿x轴翻折后再沿x轴向右平移1个单位,在图中画出平移后的△A1B1C1.
2作△ABC关于坐标原点成中心对称的△A2B2C2.
3求B1的坐标C2的坐标.
12图解见解析3﹣1,2,4,1
试题分析:1根据关于x轴对称的点的坐标特征和点平移后的坐标规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点得到△A1B1C1;
2根据关于原点对称的点的坐标,写出点A、B、C的对应点A2、B2、C2的坐标,然后描点得到△A2B2C2;
3由1可得B1的坐标,由2得C2的坐标.
解:1如图,△A1B1C1为所作;
2如图,△A2B2C2为所作;
3B1﹣1,2C24,1.
故答案为﹣1,2,4,1.
考点:作图-旋转变换;作图-轴对称变换.
23.此题6分若关于x的二次方程m+1x2+5x+m2﹣3m=4的常数项为0,求m的值.
4.
考点:一元二次方程的一般形式.
24.此题6分已知:关于x的方程x2+4x+2﹣k=0有两个不相等的实数根.
1求实数k的取值范围.
2取一个k的负整数值,且求出这个一元二次方程的根.
1k>﹣2;2x1=1,x2=3.
试题分析:1由于方程有两个不相等的实数根,△>0,由此可求k的取值范围;
2在k的取值范围内,取负整数,代入方程,解方程即可.
解:1∵方程x2+4x+2﹣k=0有两个不相等的实数根,
∴42﹣42﹣k>0,学-
即4k+8>0,解得k>﹣2;
2若k是负整数,k只能为﹣1;
假设k=﹣1,原方程为x2﹣4x+3=0,
解得:x1=1,x2=3.
考点:根的判别式.
25.此题8分在某市组织的大型商业演出活动中,对团体添置门票实行优待,抉择在原定票价根基上每张降价80元,这样按原定票价需花费6000元添置的门票张数,现在只花费了4800元.
1求每张门票的原定票价;
2根据实际处境,活动组织单位抉择对于个人购票也采取优待政策,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.
1每张门票的原定票价为400元;2平均每次降价10%.
试题分析:1设每张门票的原定票价为x元,那么现在每张门票的票价为x-80元,根据“按原定票价需花费6000元添置的门票张数,现在只花费了4800元”建立方程,解方程即可;
2设平均每次降价的百分率为y,根据“原定票价经过连续二次降价后降为324元”建立方程,解方程即可.
试题解析:1设每张门票的原定票价为x元,那么现在每张门票的票价为x-80元,根据题意得
,
解得x=400.
经检验,x=400是原方程的根.
答:每张门票的原定票价为400元;
2设平均每次降价的百分率为y,根据题意得
4001-y2=324,
解得:y1=0.1,y2=1.9不合题意,舍去.
答:平均每次降价10%.
考点:1.一元二次方程的应用;2.分式方程的应用.
26.此题8分已知一个包装盒的外观开展图如图.
1若此包装盒的容积为1125cm3,请列出关于x的方程,并求出x的值;
2是否存在这样的x的值,使得次包装盒的容积为1800cm3?若存在,苦求出相应的x的值;若不存在,请说明理由.
1x2﹣20x+75=0x=52不存在,理由见解析
此题测验了一元二次方程的应用,根据设出的立方体的高表示出其长是解决此题的关键.
1利用其体积等于1125cm3,列出有关x的一元二次方程求解即可;
2利用体积等于1800cm3,列出有关x的一元二次方程后利用根的判别式判断方程根的处境即可.
27.此题10分如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一向角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
1将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.问:此时直线ON是否平分∠AOC?请说明理由.
2将
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025上半年四川遂宁市市属事业单位考试招聘60人高频重点提升(共500题)附带答案详解
- 2025上半年四川省自贡市市属事业单位招聘161人历年高频重点提升(共500题)附带答案详解
- 2025上半年四川省内江事业单位招聘628人历年高频重点提升(共500题)附带答案详解
- 文化产业用电管理规章
- 公共云服务器租赁合同范本
- 影视咨询商标注册手册
- 电影院招投标管理技巧
- 矿产资源开发招投标承诺书模板
- 玩具采购招投标交易费指南
- 演播室租赁合同范本
- 统编版2024-2025学年第一学期四年级语文期末学业质量监测试卷(含答案)
- 北师大版七年级上册数学期末考试试题附答案
- 理论力学知到智慧树章节测试课后答案2024年秋浙江大学
- 管理英语1-001-国开机考复习资料
- 《血管活性药物静脉输注护理》团体标准解读
- 机器学习-梯度下降法
- 期末综合测试卷(试题)-2024-2025学年四年级上册数学人教版
- 浙江省学军、镇海等名校2025届高考数学押题试卷含解析
- 个人消费贷款保证合同模板
- 黑龙江省哈尔滨市2023-2024学年七年级上学期期末统考学业水平调研测试语文试卷(解析版)
- 社工个人工作述职报告
评论
0/150
提交评论