版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年四川省雅安市普通高校对口单招高等数学二自考真题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(100题)1.
2.
3.A.A.0B.1C.2D.3
4.()。A.
B.
C.
D.
5.
6.设f(x)=xe2(x-1),则在x=1处的切线方程是()。A.3x-y+4=0B.3x+y+4=0C.3x+y-4=0D.3x-y-2=0
7.
8.()。A.0B.-1C.1D.不存在
9.
10.A.A.
B.
C.
D.
11.
12.
13.
14.
15.
16.
A.4?"(u)B.4xf?"(u)C.4y"(u)D.4xy?"(u)
17.
18.
19.
20.已知事件A和B的P(AB)=0.4,P(A)=0.8,则P(B|A)=A.A.0.5B.0.6C.0.65D.0.721.()。A.0B.1C.2D.4
22.
23.
24.当x→1时,下列变量中不是无穷小量的是()。A.x2-1
B.sin(x2-1)
C.lnx
D.ex-1
25.()。A.连续的B.可导的C.左极限≠右极限D.左极限=右极限26.()。A.
B.
C.
D.
27.
28.函数f(x)=x4-24x2+6x在定义域内的凸区间是【】
A.(一∞,0)B.(-2,2)C.(0,+∞)D.(—∞,+∞)
29.
30.设?(x)具有任意阶导数,且,?ˊ(x)=2f(x),则?″ˊ(x)等于().
A.2?(x)B.4?(x)C.8?(x)D.12?(x)31.A.A.
B.
C.
D.
32.()A.6B.2C.1D.0
33.
34.
35.
36.
37.
38.设f(x)的一个原函数为xsinx,则f(x)的导函数是()。A.2sinxxcosxB.2cosxxsinxC.-2sinx+xcosxD.-2cosx+xsinx
39.
40.()。A.
B.
C.
D.
41.A.A.3f'(0)B.-3f'(0)C.f'(0)D.-f'(0)
42.
43.若,则k等于【】
A.1/3B.-1/3C.3D.-3
44.
45.A.A.
B.
C.
D.
46.3个男同学与2个女同学排成一列,设事件A={男女必须间隔排列},则P(A)=A.A.3/10B.1/10C.3/5D.2/547.()。A.0B.-1C.-3D.-548.下列结论正确的是A.A.
B.
C.
D.
49.a.一定有定义b.一定无定义c.d.可以有定义,也可以无定义50.函数f(x)在[a,b]上连续是f(x)在该区间上可积的()A.必要条件,但非充分条件
B.充分条件,但非必要条件
C.充分必要条件
D.非充分条件,亦非必要条件
51.
52.
53.()A.xyexy
B.x2exy
C.exy
D.(1+XY)exy
54.
55.
A.-2B.-1/2C.1/2D.2
56.
57.A.A.1.2B.1C.0.8D.0.758.设函数y=2+sinx,则y′=()。A.cosxB.-cosxC.2+cosxD.2-cosx
59.
60.
61.函数f(x)=(x2-1)3+1,在x=1处【】A.有极大值1B.有极小值1C.有极小值0D.无极值
62.
63.A.A.
B.
C.
D.
64.()。A.
B.
C.
D.
65.
66.
67.
68.当x→0时,x2是x-1n(1+x)的().
A.较高阶的无穷小量B.等价无穷小量C.同阶但不等价的无穷小量D.较低阶的无穷小量69.设y=f(x)二阶可导,且fˊ(1)=0,f″(1)>0,则必有().A.A.f(1)=0B.f(1)是极小值C.f(1)是极大值D.点(1,f(1))是拐点
70.
71.()。A.3B.2C.1D.2/3
72.
73.
74.A.A.是极大值B.是极小值C.不是极大值D.不是极小值
75.
76.()。A.
B.
C.
D.
77.
78.
79.
80.
81.已知f(x)=xe2x,,则f'(x)=()。A.(x+2)e2x
B.(x+2)ex
C.(1+2x)e2x
D.2e2x
82.设函数f(x)=xlnx,则∫f'(x)dx=__________。A.A.xlnx+CB.xlnxC.1+lnx+CD.(1/2)ln2x+C83.设函数f(z)在区间[a,b]连续,则曲线y=f(x)与直线x=a,x=b及x轴所围成的平面图形的面积为
84.
85.
86.A.A.0
B.
C.
D.
87.()。A.
B.
C.
D.
88.
89.()。A.
B.
C.
D.
90.从10名理事中选出3名常务理事,共有可能的人选()。A.120组B.240组C.600组D.720组
91.
92.
93.
94.设函数?(x)=sin(x2)+e-2x,则?ˊ(x)等于()。A.
B.
C.
D.
95.
96.A.A.arcsinx+CB.-arcsinx+CC.tanx+CD.arctanx+C
97.
98.A.A.
B.
C.
D.
99.A.A.
B.
C.
D.
100.A.A.4B.2C.0D.-2二、填空题(20题)101.
102.
103.104.
105.
106.107.108.
109.设事件A与B相互独立,且P(A)=0.4,P(A+B)=0.7,则P(B)=
110.111.设函数f(x)=sin(1-x),则f''(1)=________。112.113.114.115.
116.
117.
118.
119.
120.三、计算题(10题)121.
122.
123.
124.求函数z=x2+y2+2y的极值.
125.
126.
127.
128.
129.
130.
四、解答题(10题)131.
132.欲用围墙围成面积216m2的一块矩形土地,并在中间用一堵墙将其隔成两块.问这块土地的长和宽选取多大的尺寸,才能使建造围墙所用材料最省?133.
134.
135.求由曲线y=2-x2=2x-1及x≥0围成的平面图形的面积A,以及此平面图形绕x轴旋转一周所得旋转体的体积Vx。
136.137.
138.
139.计算140.五、综合题(10题)141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
六、单选题(0题)151.
参考答案
1.4!
2.B
3.D
4.B
5.C
6.D因为f'(x)=(1+2x)e2(x-1),f'(1)=3,则切线方程的斜率k=3,切线方程为y-1=3(x-1),即3x-y一2=0,故选D。
7.C
8.D
9.C
10.B
11.C
12.y=(x+C)cosx
13.A
14.A
15.D
16.D此题暂无解析
17.B
18.B
19.C
20.A
21.D
22.B
23.A
24.D
25.D
26.B
27.A
28.B因为f(x)=x4-24x2+6x,则f’(x)=4x3-48x+6,f"(x)=12x2-48=12(x2—4),令f〃(x)<0,有x2-4<0,于是-2<x<2,即凸区间为(-2,2).
29.D
30.C
31.D
32.A
33.B
34.D
35.B
36.A
37.C
38.B本题主要考查原函数的概念。因为f(x)=(xsinx)ˊ=sinx+xcosx,则fˊ(x)=cosx+cosx-xsinx=2cosx-xsinx,选B。
39.C
40.B
41.A
42.A
43.C
44.B
45.B
46.B
47.C
48.D
49.D
50.B根据定积分的定义和性质,函数f(x)在[a,b]上连续,则f(x)在[a,b]上可积;反之,则不一定成立。
51.B
52.A
53.D
54.C
55.A此题暂无解析
56.
57.A
58.A
59.D
60.A
61.D
62.B
63.A
64.B
65.A
66.B
67.
68.C本题考查两个无穷小量阶的比较.
比较两个无穷小量阶的方法就是求其比的极限,从而确定正确的选项.本题即为计算:
由于其比的极限为常数2,所以选项C正确.
请考生注意:由于分母为x-ln(1+x),所以本题不能用等价无穷小量代换ln(1+x)-x,否则将导致错误的结论.
与本题类似的另一类考题(可以为选择题也可为填空题)为:确定一个无穷小量的“阶”.例如:当x→0时,x-In(1+x)是x的
A.1/2阶的无穷小量
B.等价无穷小量
C.2阶的无穷小量
D.3阶的无穷小量
要使上式的极限存在,则必须有k-2=0,即k=2.
所以,当x→0时,x-in(1坝)为x的2阶无穷小量,选C.
69.B根据极值的第二充分条件确定选项.
70.C
71.D
72.C
73.
74.B根据极值的充分条件:B2-AC=-2,A=2>0所以f(1,1)为极小值,选B。
75.C
76.B
77.D
78.D
79.B
80.f(2x)
81.Cf'(x)=(xe2x)'=e2x+2xe2x=(1+2x)e2x。
82.A
83.C
84.B解析:
85.D
86.D
87.C
88.C
89.D
90.A
91.A解析:
92.A
93.1/2
94.B本题主要考查复合函数的求导计算。求复合函数导数的关键是理清其复合过程:第一项是sinu,u=x2;第二项是eυ,υ=-2x.利用求导公式可知
95.C解析:
96.D
97.C
98.B
99.B
100.A101.e3
102.
103.104.xsinx2
105.D
106.107.2
108.
109.0.5
110.111.0
112.
113.
用凑微分法积分可得答案.
114.
所以k=2.115.-2或3
116.π/2π/2解析:
117.
118.
求出yˊ,化简后再求),”更简捷.
119.2
120.1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖南科技学院《分布式系统与云计算》2022-2023学年第一学期期末试卷
- 施工合同挂靠协议书(2篇)
- 2024至2030年中国精密小塑料行业投资前景及策略咨询研究报告
- 2024至2030年中国防静电玻璃纤维板行业投资前景及策略咨询研究报告
- 街道团工委2024年工作计划
- 2024至2030年中国黑色母料行业投资前景及策略咨询研究报告
- 2024至2030年中国透皮制剂行业投资前景及策略咨询研究报告
- 山东省淄博市2023-2024学年高一上学期期末教学质量检测英语试题 含解析
- 2024至2030年中国矩形式照明灯行业投资前景及策略咨询研究报告
- 2024至2030年中国电子扇电机行业投资前景及策略咨询研究报告
- 《中国政治思想史》课程教学大纲
- 2023年云南开放大学编外职工招聘笔试真题
- 学校矛盾纠纷排查化解工作方案(3篇)
- 高血压疑难病例讨论
- (正式版)HGT 6313-2024 化工园区智慧化评价导则
- 二级公立医院绩效考核三级手术目录(2020版)
- 6人小品《没有学习的人不伤心》台词完整版
- GA 1551.6-2021 石油石化系统治安反恐防范要求 第6部分:石油天然气管道企业
- 陕西省中小河流治理项目《运行管理工作报告编制指南》
- 商场商户装修入驻工作流程
- 新产品试产导入流程
评论
0/150
提交评论