正弦及特殊角的正弦值_第1页
正弦及特殊角的正弦值_第2页
正弦及特殊角的正弦值_第3页
正弦及特殊角的正弦值_第4页
正弦及特殊角的正弦值_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第4章锐角三角函数正弦和余弦第1课时正弦及特殊角的正弦值【知识与技能】1.使学生理解锐角正弦的定义.2.会求直三角形中锐角的正弦值.【过程与方法】使学生经历探索正弦定义的过程.逐步培养学生观察、比较、分析、归纳的能力.【情感态度】通过探索、发现,培养学生独立思考、勇于创新的精神和良好的学习习惯.【教学重点】根据定义求锐角的正弦值.【教学难点】探索“在直角三角形中,任意锐角的对边与斜边的比值是一个常数”的过程.一、情境导入,初步认识1.下图是国旗旗杆远景图,你能想办法求出该旗杆的高度吗?2.学习了本章内容你就能简捷地解决这类问题,本章将介绍锐角三角形函数,它们的本事可大了,可以用来解决实际问题,今天我们来学习第一节“正弦和余弦”.【教学说明】通过实际问题,创设情境,引发学生产生认知盲点,激发学生学习的兴趣和探究的欲望,有利于引导学生进行数学思考.二、思考探究,获取新知1.画一个直角三角形,其中一个锐角为65°,量出65°角的对边长度和斜边长度,计算:(1)与同桌和邻桌的同学交流,看看你们计算出的比值是否相等.(2)根据计算的结果,你能得到什么结论?(3)这个结论是正确的吗?(4)若把65°角换成任意一个锐角α,则这个角的对边与斜边的比值是否也是一个常数呢?2.如图,△ABC和△DEF都是直角三角形,其中∠A=∠D=α、∠C=∠F=90°,则成立吗?请说出你的证明过程.通过我们的证明,这就说明,在有一个锐角等于α的所有直角三角形中,角α的对边与斜边的比值是一个常数,与直角三角形的大小无关.【归纳结论】在直角三角形中,我们把锐角α的对边与斜边的比叫作角α的正弦.记作sinα.3.计算sin30°、sin45°、sin60°的值.【教学说明】引导学生利用“30°的角所对的直角边等于斜边的一半”和“勾股定理”进行计算.【归纳结论】sin30°=;sin45°=;sin60°=.解析:根据sin30°=,sin45°=,sin60°=,我们可以发现锐角的度数越大,正弦值越大.三、理解新知,例题精讲例1:如图所示,在Rt△ABC中,∠C=90°,BC=3,AB=5.

(1)求sinA的值;

(2)求sinB的值.

四、运用新知,巩固训练1.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,(1)求∠A的正弦sinA.(2)求∠B的正弦sinB.分析:先利用勾股定理算出AB的长,再利用正弦的计算方法进行计算.解:(1)∠A的对边BC=3,斜边AB=5,于是sinA=.(2)∠B的对边是AC,因此sinB==.2.在Rt△ABC中,如果各边长度都扩大3倍,则锐角A的正弦值()A.不变化B.扩大3倍C.缩小D.缩小3倍分析:因为各边值都扩大3倍,所以锐角A的对边与斜边的比值不变.【答案】A3.如图,在直角三角形ABC中,∠C=90°,BC=5,AB=13.求sinA,sinB的值.

4.如图,在平面直角坐标系内有一点P(3,4),连接OP,求OP与x轴正方向所夹锐角α的正弦值.

四、运用新知,深化理解5.已知:在△ABC中,∠B=45°,∠C=75°,AC=2,求BC的长.分析:作△ABC的一条高,把原三角形转化成直角三角形,并注意保留原三角形中的特殊角.解:作CD⊥AB于D点.∵∠B=45°,∠ACB=75°,∴∠A=60°∵AC=2,sinA=,∴CD=2sin60°=.在Rt△BCD中,∠CDB=90°,∠B=45°,∴sinB==,∴BC=.6.在△ABC中,∠B为锐角,AB=6,AC=5,sinC=,求BC的长。7.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=,BC=2,则sin∠ACD的值为()A.B.C.D.【教学说明】收集学生在课堂上学习的时候出现的易错点和难点,引导学生查找、分析原因,并且有针对性补充练习,促进提高,由基础慢慢进入到提高,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论