




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,⊙O的半径为6,直径CD过弦EF的中点G,若∠EOD=60°,则弦CF的长等于()A.6 B.6 C.3 D.92.已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:则下列判断中正确的是()
x
…
﹣1
0
1
2
…
y
…
﹣5
1
3
1
…A.抛物线开口向上
B.抛物线与y轴交于负半轴C.当x=3时,y<0
D.方程ax2+bx+c=0有两个相等实数根3.如图,在正方形ABCD中,G为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E.若FG=2,则AE的长度为()A.6 B.8C.10 D.124.如图,⊙O是△ABC的外接圆,∠BOC=100°,则∠A的度数为()A.40° B.50° C.80° D.100°5.如图,点在的边上,以原点为位似中心,在第一象限内将缩小到原来的,得到,点在上的对应点的的坐标为()A. B. C. D.6.如图,两个反比例函数和在第一象限内的图象依次是C1和C2,设点P在C1上,轴于点C,交C2于点A,轴于点D,交C2于点B,则四边形PAOB的面积为()A.2 B.3 C.4 D.57.如图,在中,,,,点O是AB的三等分点,半圆O与AC相切,M,N分别是BC与半圆弧上的动点,则MN的最小值和最大值之和是()A.5 B.6 C.7 D.88.下列方程中,是一元二次方程的是()A. B. C. D.9.在校田径运动会上,小明和其他三名选手参加100米预赛,赛场共设1,2,3,4四条跑道,选手以随机抽签的方式决定各自的跑道.若小明首先抽签,则小明抽到1号跑道的概率是()A. B. C. D.10.截止到2018年底,过去五年我国农村贫困人口脱贫人数约为7000万,脱贫攻坚取得阶段性胜利,这里“7000万”用科学记数法表示为()A.7×103 B.7×108 C.7×107 D.0.7×108二、填空题(每小题3分,共24分)11.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.当y=﹣1时,n=_____.12.若二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).则S=a+b+c的值的变化范围是_____.13.如图,在Rt△ABC中,∠ACB=90°,AC=BC=,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是_____.14.已知关于x的一元二次方程两根是分别α和β则m=_____,α+β=_____.15.超市经销一种水果,每千克盈利10元,每天销售500千克,经市场调查,若每千克涨价1元,日销售量减少20千克,现超市要保证每天盈利6000元,每千克应涨价为______元.16.函数y=kx,y=,y=的图象如图所示,下列判断正确的有_____.(填序号)①k,a,b都是正数;②函数y=与y=的图象会出现四个交点;③A,D两点关于原点对称;④若B是OA的中点,则a=4b.17.方程x2=1的解是_____.18.如图,在平面直角坐标系中,边长为6的正六边形ABCDEF的对称中心与原点O重合,点A在x轴上,点B在反比例函数位于第一象限的图象上,则k的值为.三、解答题(共66分)19.(10分)如图,抛物线y=x2﹣2x﹣3与x轴分别交于A,B两点(点A在点B的左边),与y轴交于点C,顶点为D.(1)如图1,求△BCD的面积;(2)如图2,P是抛物线BD段上一动点,连接CP并延长交x轴于E,连接BD交PC于F,当△CDF的面积与△BEF的面积相等时,求点E和点P的坐标.20.(6分)如图,是的直径,轴,交于点.(1)若点,求点的坐标;(2)若为线段的中点,求证:直线是的切线.21.(6分)在一个不透明的布袋里装有个标号分别为的小球,这些球除标号外无其它差别.从布袋里随机取出一个小球,记下标号为,再从剩下的个小球中随机取出一个小球,记下标号为记点的坐标为.(1)请用画树形图或列表的方法写出点所有可能的坐标;(2)求两次取出的小球标号之和大于的概率;(3)求点落在直线上的概率.22.(8分)解方程:(配方法)23.(8分)(1)解方程:x2+4x-1=0(2)已知α为锐角,若,求的度数.24.(8分)在下列网格图中,每个小正方形的边长均为1个单位.Rt△ABC中,∠C=90°,AC=3,BC=4,△ABC以A为旋转中心,沿顺时针方向旋转90°后得到△AB1C1;(1)作出△AB1C1;(不写画法)(2)求点C转过的路径长;(3)求边AB扫过的面积.25.(10分)如图,抛物线与轴交于点和,与轴交于点顶点为.求抛物线的解析式;求的度数;若点是线段上一个动点,过作轴交抛物线于点,交轴于点,设点的横坐标为.①求线段的最大值;②若是等腰三角形,直接写出的值.26.(10分)如图,直线分别与轴交于点,与轴交于点,与双曲线交于点.(1)求与的值;(2)已知是轴上的一点,当时,求点的坐标.
参考答案一、选择题(每小题3分,共30分)1、B【分析】连接DF,根据垂径定理得到,得到∠DCF=∠EOD=30°,根据圆周角定理、余弦的定义计算即可.【详解】解:连接DF,∵直径CD过弦EF的中点G,∴,∴∠DCF=∠EOD=30°,∵CD是⊙O的直径,
∴∠CFD=90°,
∴CF=CD•cos∠DCF=12×=,故选B.【点睛】本题考查的是垂径定理的推论、解直角三角形,掌握平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解题的关键.2、C【解析】根据表格的数据,描点连线得,根据函数图像,得:抛物线开口向下;抛物线与y轴交于正半轴;当x=3时,y<0;方程有两个相等实数根.故选C.3、D【解析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出=2,结合FG=2可求出AF、AG的长度,由AD∥BC,DG=CG,可得出AG=GE,即可求出AE=2AG=1.【详解】解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴=2,∴AF=2GF=4,∴AG=2.∵AD∥BC,DG=CG,∴=1,∴AG=GE∴AE=2AG=1.故选:D.【点睛】本题考查了相似三角形的判定与性质、正方形的性质,利用相似三角形的性质求出AF的长度是解题的关键.4、B【分析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,得∠BOC=2∠A,进而可得答案.【详解】解:∵⊙O是△ABC的外接圆,∠BOC=100°,∴∠A=∠BOC=50°.故选:B.【点睛】本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5、A【解析】根据位似的性质解答即可.【详解】解:∵点P(8,6)在△ABC的边AC上,以原点O为位似中心,在第一象限内将△ABC缩小到原来的,得到△A′B′C′,∴点P在A′C′上的对应点P′的的坐标为:(4,3).故选A.【点睛】此题主要考查了位似变换,正确得出位似比是解题关键.如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,进而结合已知得出答案.6、B【解析】试题分析:∵PC⊥x轴,PD⊥y轴,∴S矩形PCOD=4,S△AOC=S△BOD=×1=,∴四边形PAOB的面积=S矩形PCOD-S△AOC-S△BOD=4--=1.故选B.考点:反比例函数系数k的几何意义.7、B【解析】设⊙O与AC相切于点D,连接OD,作垂足为P交⊙O于F,此时垂线段OP最短,PF最小值为,当N在AB边上时,M与B重合时,MN经过圆心,经过圆心的弦最长,根据图形与圆的性质即可求解.【详解】如图,设⊙O与AC相切于点D,连接OD,作垂足为P交⊙O于F,此时垂线段OP最短,PF最小值为,∵,,∴∵,∴∵点O是AB的三等分点,∴,,∴,∵⊙O与AC相切于点D,∴,∴,∴,∴,∴MN最小值为,如图,当N在AB边上时,M与B重合时,MN经过圆心,经过圆心的弦最长,MN最大值,,∴MN长的最大值与最小值的和是1.故选B.【点睛】此题主要考查圆与三角形的性质,解题的关键是熟知圆的性质及直角三角形的性质.8、D【解析】只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.【详解】解:A、是一元一次方程,故A不符合题意;B、是二元二次方程,故B不符合题意;C、是分式方程,故C不符合题意;D、是一元二次方程,故D符合题意;故选择:D.【点睛】此题主要考查了一元二次方程的定义,要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.9、B【详解】解:小明选择跑道有4种结果,抽到跑道1只有一种结果,小明抽到1号跑道的概率是故选B.【点睛】本题考查概率.10、C【分析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.【详解】将数据7000万用科学记数法表示为.
故选:C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,为整数,表示时关键要正确确定的值以及的值.二、填空题(每小题3分,共24分)11、-1.【分析】首先根据题意,可得:x2+2x=m,2x+3=n,m+n=y;然后根据y=﹣1,可得:x2+2x+2x+3=﹣1,据此求出x的值是多少,进而求出n的值是多少即可.【详解】根据题意,可得:x2+2x=m,2x+3=n,m+n=y,∵y=﹣1,∴x2+2x+2x+3=﹣1,∴x2+4x+4=0,∴(x+2)2=0,∴x+2=0,解得x=﹣2,∴n=2x+3=2×(﹣2)+3=﹣1.故答案为:﹣1.【点睛】此题考查一元二次方程的解法,根据方程的特点选择适合的解法是解题的关键.12、1<S<2【分析】将已知两点坐标代入二次函数解析式,得出c的值及a、b的关系式,代入S=a+b+c中消元,再根据对称轴的位置判断S的取值范围即可.【详解】解:将点(1,1)和(﹣1,1)分别代入抛物线解析式,得c=1,a=b﹣1,∴S=a+b+c=2b,由题设知,对称轴x=且,∴2b>1.又由b=a+1及a<1可知2b=2a+2<2.∴1<S<2.故答案为:1<S<2.【点睛】本题考查了二次函数图象上点的坐标特点,运用了消元法的思想,对称轴的性质,需要灵活运用这些性质解题.13、【解析】先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD.【详解】解:如图,∵∠ACB=90°,AC=BC=,∴AB==,∴S扇形ABD==,又∴Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=.故答案是:.【点睛】本题考查了扇形的面积公式:S=,也考查了勾股定理以及旋转的性质.14、-21【分析】首先根据一元二次方程的概念求出m的值,然后根据根与系数的关系即可得出答案.【详解】∵是一元二次方程,,解得,.两根是分别α和β,,故答案为:-2,1.【点睛】本题主要考查一元二次方程,掌握一元二次方程的概念及根与系数的关系是解题的关键.15、5或1【分析】设每千克水果应涨价x元,得出日销售量将减少20x千克,再由盈利额=每千克盈利×日销售量,依题意得方程求解即可.【详解】解:设每千克水果应涨价x元,依题意得方程:(500-20x)(1+x)=6000,整理,得x2-15x+50=0,解这个方程,得x1=5,x2=1.答:每千克水果应涨价5元或1元.故答案为:5或1.【点睛】本题考查了一元二次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.16、①③④【分析】根据反比例函数、一次函数的性质以及反比例函数系数k的几何意义即可判断.【详解】解:由图像可知函数y=kx经过一、三象限,h函数y=,y=在一、三象限,则k>0,a>0,b>0,故①正确;由图像可知函数y=与y=的图像没有交点,故②错误;根据正比例函数和反比例函数的图像都是中心对称图像可知,A,D两点关于原点对称,故③正确;若B是OA的中点,轴OA=2OB,作AM⊥x轴于M,BN⊥x轴于N,∴BN∥AM,∴△BON∽△AOM,∴,∴,∴b=4a,故④正确:故答案为①③④.【点睛】本题考查了相似性质、反比例函数、一次函数的性质以及反比例函数系数k的几何意义,数形结合的思想是解题的关键17、±1【解析】方程利用平方根定义开方求出解即可.【详解】∵x2=1∴x=±1.【点睛】本题考查直接开平方法解一元二次方程,解题关键是熟练掌握一元二次方程的解法.18、【解析】试题分析:连接OB,过B作BM⊥OA于M,∵六边形ABCDEF是正六边形,∴∠AOB=10°.∵OA=OB,∴△AOB是等边三角形.∴OA=OB=AB=1.∴BM=OB•sin∠BOA=1×sin10°=,OM=OB•COS10°=2.∴B的坐标是(2,).∵B在反比例函数位于第一象限的图象上,∴k=2×=.三、解答题(共66分)19、(1)3;(2)E(5,0),P(,﹣)【分析】(1)分别求出点C,顶点D,点A,B的坐标,如图1,连接BC,过点D作DM⊥y轴于点M,作点D作DN⊥x轴于点N,证明△BCD是直角三角形,即可由三角形的面积公式求出其面积;(2)先求出直线BD的解析式,设P(a,a2﹣2a﹣3),用含a的代数式表示出直线PC的解析式,联立两解析式求出含a的代数式的点F的坐标,过点C作x轴的平行线,交BD于点H,则yH=﹣3,由△CDF与△BEF的面积相等,列出方程,求出a的值,即可写出E,P的坐标.【详解】(1)在y=x2﹣2x﹣3中,当x=0时,y=﹣3,∴C(0,﹣3),当x=﹣=1时,y=﹣4,∴顶点D(1,﹣4),当y=0时,x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),如图1,连接BC,过点D作DM⊥y轴于点M,作点D作DN⊥x轴于点N,∴DC2=DM2+CM2=2,BC2=OC2+OB2=18,DB2=DN2+BN2=20,∴DC2+BC2=DB2,∴△BCD是直角三角形,∴S△BCD=DC•BC=×3=3;(2)设直线BD的解析式为y=kx+b,将B(3,0),D(1,﹣4)代入,得,解得,k=2,b=﹣6,∴yBD=2x﹣6,设P(a,a2﹣2a﹣3),直线PC的解析式为y=mx﹣3,将P(a,a2﹣2a﹣3)代入,得am=a2﹣2a﹣3,∵a≠0,∴解得,m=a﹣2,∴yPC=(a﹣2)x﹣3,当y=0时,x=,∴E(,0),联立,解得,,∴F(,),如图2,过点C作x轴的平行线,交BD于点H,则yH=﹣3,∴H(,﹣3),∴S△CDF=CH•(yF﹣yD),S△BEF=BE•(﹣yF),∴当△CDF与△BEF的面积相等时,CH•(yF﹣yD)=BE•(﹣yF),即×(+4)=(﹣3)(﹣),解得,a1=4(舍去),a2=,∴E(5,0),P(,﹣).【点睛】此题主要考查二次函数与几何综合,解题的关键是熟知二次函数的图像与性质、一次函数的性质及三角形面积的求解.20、(1);(2)见解析.【分析】(1)由A、N两点坐标可求AN的长,利用,,由勾股定理求BN即可,(2)连接MC,NC,由是的直径,可得,D为线段的中点,由直角三角形斜边中线CD的性质得ND=CD,由此得,由半径知,利用等式的性质得∠MCD=∠MND=90º,可证直线是的切线.【详解】的坐标为,,,,由勾股定理可知:,;连接MC,NC,是的直径,,,为线段的中点,,,,,,,即,直线是的切线.【点睛】本题考查点的坐标与切线问题,掌握用两点坐标求线段的长,能在直角三角形中,利用30º角求线段,会利用勾股定理解决问题,会利用半径证角等,利用直角三角形的斜边中线解决角等与线段相等问题,利用等式的性质证直角等知识.21、(1)见解析;(2)(3).【分析】(1)根据题意直接画出树状图即可(2)根据(1)所画树状图分析即可得解(3)若使点落在直线上,则有x+y=5,结合树状图计算即可.【详解】解:(1)画树状图得:共有种等可能的结果数;(2)共有种等可能的结果数,其中两次取出的小球标号之和大于的有种,两次取出的小球标号之和大于的概率是;(3)点落在直线上的情况共有4种,点落在直线上的概率是.【点睛】本题考查的知识点是求简单事件的概率问题,根据题目画出树状图,数形结合,可以使题目简单明了,更容易得到答案.22、,【分析】根据配方法的步骤进行计算即可.【详解】解:移项得:,配方得:,即,开方得:,解得:,.【点睛】本题考查了配方法,解题的关键是注意:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.23、(1),;(2)75°.【分析】(1)用公式法即可求解;(2)根据特殊角的三角函数求解即可.【详解】(1)∵,∴,∴,,(2)∵,∴,∴.【点睛】本题考查了利用公式法解一元二次方程和利用特殊角的三角函数值求角的度值,熟记特殊角的三角函数值是解题的关键.24、(1)见解析;(2)π;(3)π【分析】(1)根据旋转的性质可直接进行作图;(2)由(1)图及旋转的性质可得点C的运动路径为圆弧,其所在的圆心为A,半径为3,然后根据弧长计算公式可求解;(3)由题意可得边AB扫过的面积为扇形的面积,其扇形的圆心角为90°,半径为5,然后可求解.【详解】解:(1)如图所示:(2)∵由已知得,CA=3,∴点C旋转到点C1所经过的路线长为:=π×3=π;(3)由图可得:AB===5,∴S=π×52=π.【点睛】本题主要考查旋转的性质、弧长计算及扇形的面积,熟练掌握旋转的性质、弧长计算及扇形的面积公式是解题的关键.25、(1)y=x2-4x+2,(2)90°,(2)①,②m=2或m=或m=1.【分析】(1)将点B,C代入抛物线的解析式中,利用待定系数法即可得出答案;(2)先求出点D的坐标,然后利用OB=OC,得出∠CBO=45°,过D作DE⊥x轴,垂足为E,再利用DE=BE,得出∠DBO=45°,则的度数可求;(2)①先用待定系数法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《战略更新课件:引领企业未来》
- 2025年江西省南昌市中考物理一调试卷(解析版)
- 合同终止时的员工权益
- 数据库技术COMPUTER课件
- 铁路桥隧无损检测任务三隧道检测的内容课件
- 铁路市场营销市场定位的涵义课件
- 《Python程序设计基础》课件 第七章 面向对象编程
- 铁路信号与通信设备接发列车工作31课件
- 中医灸法技能培训班课件
- 中专文化课课件
- (广东二模)2025年广东省高三高考模拟测试(二)语文试卷(含答案解析)
- 2025-2030中国类脑计算行业市场发展现状及建设案例与发展趋势研究报告
- 2025-2030中国磁悬浮发电机行业市场现状分析及竞争格局与投资发展研究报告
- 2024年四川宜宾环球集团有限公司招聘考试真题
- 脑出血病人护理新进展
- SL631水利水电工程单元工程施工质量验收标准第3部分:地基处理与基础工程
- 2025时政试题及答案(100题)
- 2024-2025学年统编版七年级语文下册第四单元检测A卷(原卷+答案)
- 医疗器械操作规范与安全知识培训试题库
- 安全阀培训课件
- 市场集中度与消费者行为-全面剖析
评论
0/150
提交评论