2022-2023学年安徽省庐阳区五校联考九年级数学第一学期期末监测模拟试题含解析_第1页
2022-2023学年安徽省庐阳区五校联考九年级数学第一学期期末监测模拟试题含解析_第2页
2022-2023学年安徽省庐阳区五校联考九年级数学第一学期期末监测模拟试题含解析_第3页
2022-2023学年安徽省庐阳区五校联考九年级数学第一学期期末监测模拟试题含解析_第4页
2022-2023学年安徽省庐阳区五校联考九年级数学第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.△ABC在正方形网格中的位置如图所示,则cosB的值为()A. B. C. D.22.用蓝色和红色可以混合在一起调配出紫色,小明制作了如图所示的两个转盘,其中一个转盘两部分的圆心角分别是120°和240°,另一个转盘两部分被平分成两等份,分别转动两个转盘,转盘停止后,指针指向的两个区域颜色恰能配成紫色的概率是()A. B. C. D.3.如图,在线段AB上有一点C,在AB的同侧作等腰△ACD和等腰△ECB,且AC=AD,EC=EB,∠DAC=∠CEB,直线BD与线段AE,线段CE分别交于点F,G.对于下列结论:①△DCG∽△BEG;②△ACE∽△DCB;③GF·GB=GC·GE;④若∠DAC=∠CEB=90°,则2AD2=DF·DG.其中正确的是()A.①②③④ B.①②③ C.①③④ D.①②4.如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的半径等于()A.8 B.4 C.10 D.55.某商品原价为180元,连续两次提价后售价为300元,设这两次提价的年平均增长率为x,那么下面列出的方程正确的是()A.180(1+x)=300 B.180(1+x)2=300C.180(1﹣x)=300 D.180(1﹣x)2=3006.在中,,,若,则的长为().A. B. C. D.7.已知抛物线具有如下性质:抛物线上任意一点到定点的距离与到轴的距离相等.如图点的坐标为,是抛物线上一动点,则周长的最小值是()A. B. C. D.8.如图,AB,AC分别为⊙O的内接正三角形和内接正四边形的一边,若BC恰好是同圆的一个内接正n边形的一边,则n的值为()A.8 B.10 C.12 D.159.已知点A(x1,y1),B(x2,y2)在双曲线y=上,如果x1<x2,而且x1•x2>0,则以下不等式一定成立的是()A.y1+y2>0 B.y1﹣y2>0 C.y1•y2<0 D.<010.下列图形是中心对称图形的是()A. B. C. D.11.如图,,则下列比例式错误的是()A. B. C. D.12.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则()A. B. C. D.二、填空题(每题4分,共24分)13.计算:______.14.如图,矩形中,,点是边上一点,交于点,则长的取值范围是____.15.已知线段、满足,则________.16.如图,在△ABC中,∠C=90°,∠A=α,AC=20,请用含α的式子表示BC的长___________.17.已知,是关于的方程的两根,且满足,则的值为_______.18.某一时刻,测得一根高1.5m的竹竿在阳光下的影长为2.5m.同时测得旗杆在阳光下的影长为30m,则旗杆的高为__________m.三、解答题(共78分)19.(8分)如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的总蓄水量;(2)写出此函数的解析式;

(3)若要6h排完水池中的水,那么每小时的排水量应该是多少?20.(8分)已知,如图,△ABC中,AD是中线,且CD2=BE·BA.求证:ED·AB=AD·BD.21.(8分)化简:22.(10分)如图,⊙O的直径AB为10cm,弦BC=8cm,∠ACB的平分线交⊙O于点D.连接AD,BD.求四边形ABCD的面积.23.(10分)如图,在平面直角坐标系中,抛物线与轴交于,两点,与轴交于点,直线经过,两点,抛物线的顶点为,对称轴与轴交于点.(1)求此抛物线的解析式;(2)求的面积;(3)在抛物线上是否存在一点,使它到轴的距离为4,若存在,请求出点的坐标,若不存在,则说明理由.24.(10分)某校为了解节能减排、垃圾分类等知识的普及情况,从该校2000名学生中随机抽取了部分学生进行调查,调查结果分为“非常了解”、“了解”、“了解较少”、“不了解”四类,并将调查结果绘制成如图所示两幅不完整的统计图,请根据统计图回答下列问题:(1)补全条形统计图并填空,本次调查的学生共有名,估计该校2000名学生中“不了解”的人数为.(2)“非常了解”的4人中有A1、A2两名男生,B1、B2两名女生,若从中随机抽取两人去参加环保知识竞赛,请用画树状图或列表的方法,求恰好抽到两名男生的概率.25.(12分)如图,是的直径,弦于点,点在上,恰好经过圆心,连接.(1)若,,求的直径;(2)若,求的度数.26.如图,在中,,是上任意一点.(1)过三点作⊙,交线段于点(要求尺规作图,不写作法,但要保留作图痕迹);(2)若弧DE=弧DB,求证:是⊙的直径.

参考答案一、选择题(每题4分,共48分)1、A【解析】解:在直角△ABD中,BD=2,AD=4,则AB=,则cosB=.故选A.2、B【解析】列表如下:红红蓝红紫蓝紫紫共有9种情况,其中配成紫色的有3种,所以恰能配成紫色的概率=故选B.3、A【解析】利用三角形的内角和定理及两组角分别相等证明①正确;根据两组边成比例夹角相等判断②正确;利用③的相似三角形证得∠AEC=∠DBC,又对顶角相等,证得③正确;根据△ACE∽△DCB证得F、E、B、C四点共圆,由此推出△DCF∽△DGC,列比例线段即可证得④正确.【详解】①正确;在等腰△ACD和等腰△ECB中AC=AD,EC=EB,∠DAC=∠CEB,∴∠ACD=∠ADC=∠BCE=∠BEC,∴∠DCG=180-∠ACD-∠BCE=∠BEC,∵∠DGC=∠BGE,∴△DCG∽△BEG;②正确;∵∠ACD+∠DCG=∠BCE+∠DCG,∴∠ACE=∠DCB,∵,∴△ACE∽△DCB;③正确;∵△ACE∽△DCB,∴∠AEC=∠DBC,∵∠FGE=∠CGB,∴△FGE∽△CGB,∴GF·GB=GC·GE;④正确;如图,连接CF,由②可得△ACE∽△DCB,∴∠AEC=∠DBC,∴F、E、B、C四点共圆,∴∠CFB=∠CEB=90,∵∠ACD=∠ECB=45,∴∠DCE=90,∴△DCF∽△DGC∴,∴,∵,∴2AD2=DF·DG.故选:A.【点睛】此题考查相似三角形的判定及性质,等腰三角形的性质,③的证明可通过②的相似推出所需要的条件继而得到证明;④是本题的难点,需要重新画图,并根据条件判定DF、DG所在的三角形相似,由此可判断连接CF,由此证明F、E、B、C四点共圆,得到∠CFB=∠CEB=90是解本题关键.4、D【详解】解:∵OM⊥AB,∴AM=AB=4,由勾股定理得:OA===5;故选D.5、B【分析】本题可先用x表示出第一次提价后商品的售价,再根据题意表示出第二次提价后的售价,然后根据已知条件得到关于x的方程.【详解】当商品第一次提价后,其售价为:180(1+x);当商品第二次提价后,其售价为:180(1+x)1.∴180(1+x)1=2.故选:B.【点睛】本题主要考查一元二次方程的应用,要根据题意表示出第一次提价后商品的售价,再根据题意列出第二次提价后售价的方程,令其等于2即可.6、A【分析】根据余弦的定义和性质求解即可.【详解】∵,,∴∴故答案为:A.【点睛】本题考查了锐角三角函数的问题,掌握余弦的定义和性质是解题的关键.7、C【分析】作过作轴于点,过点作轴于点,交抛物线于点,由结合,结合点到直线之间垂线段最短及MF为定值,即可得出当点P运动到点P′时,△PMF周长取最小值,再由点、的坐标即可得出、的长度,进而得出周长的最小值.【详解】解:作过作轴于点,由题意可知:,∴周长=,又∵点到直线之间垂线段最短,∴当、、三点共线时最小,此时周长取最小值,过点作轴于点,交抛物线于点,此时周长最小值,、,,,周长的最小值.故选:.【点睛】本题考查了二次函数的性质、二次函数图象上点的坐标特征以及点到直线的距离,根据点到直线之间垂线段最短找出△PMF周长的取最小值时点P的位置是解题的关键.8、C【分析】根据图形求出正多边形的中心角,再由正多边形的中心角和边的关系:,即可求得.【详解】连接OA、OB、OC,如图,∵AC,AB分别为⊙O的内接正四边形与内接正三角形的一边,∴∠AOC==90°,∠AOB==120°,∴∠BOC=∠AOB﹣∠AOC=30°,∴n==12,即BC恰好是同圆内接一个正十二边形的一边.故选:C.【点睛】本题考查正多边形的中心角和边的关系,属基础题.9、B【分析】根据题意可得x1<x2,且x1、x2同号,根据反比例函数的图象与性质可得y1>y2,即可求解.【详解】反比例函数y=的图象分布在第一、三象限,在每一象限y随x的增大而减小,而x1<x2,且x1、x2同号,所以y1>y2,即y1﹣y2>0,故选:B.【点睛】本题考查反比例函数的图象与性质,掌握反比例函数的图象与性质是解题的关键.10、B【分析】根据中心对称图形的概念和各图的性质求解.【详解】A、是轴对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.故选:B.【点睛】此题主要考查了中心对称图形的概念.要注意,中心对称图形是要寻找对称中心,旋转180度后与原图重合.11、A【分析】由题意根据平行线分线段成比例定理写出相应的比例式,即可得出答案.【详解】解:∵DE∥BC,∴,,,∴A错误;故选:A.【点睛】本题考查平行线分线段成比例定理,熟练平行线分线段成比例定理,关键是找准对应关系,避免错选其他答案.12、A【分析】根据正方形的面积公式可得大正方形的边长为,小正方形的边长为5,再根据直角三角形的边角关系列式即可求解.【详解】解:∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长为,小正方形的边长为5,∴,∴,∴.故选A.【点睛】本题考查了解直角三角形、勾股定理的证明和正方形的面积,难度适中,解题的关键是正确得出.二、填空题(每题4分,共24分)13、【分析】根据特殊角三角函数值和二次根式化简整理,合并同类二次根式即可求解.【详解】解:.故答案为:【点睛】本题考查了特殊角的三角函数值和二次根式的计算,熟知特殊角的三角函数值是解题关键.14、【分析】证明,利用相似比列出关于AD,DE,EC,CF的关系式,从而求出长的取值范围.【详解】∵∴∴∵四边形是矩形∴∴∴∴∴∴因为∴故答案为:.【点睛】本题考查了一元二次方程的最值问题,掌握相似三角形的性质以及判定、解一元二次方程得方法是解题的关键.15、【解析】此题考查比例知识,答案16、【分析】在直角三角形中,角的正切值等于其对边与邻边的比值,据此求解即可.【详解】在Rt△ABC中,∵∠A=α,AC=20,∴=,即BC=.故答案为:.【点睛】本题主要考查了三角函数解直角三角形,熟练掌握相关概念是解题关键.17、5【分析】由韦达定理得,,将其代入即可求得k的值.【详解】解:、是方程的两个根,,.,.故答案为:.【点睛】本题主要考查根与系数的关系,解题的关键是掌握韦达定理与方程的解的定义.18、1.【解析】分析:根据同一时刻物高与影长成比例,列出比例式再代入数据计算即可.详解:∵==,解得:旗杆的高度=×30=1.故答案为1.点睛:本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立数学模型来解决问题.三、解答题(共78分)19、(1)48000m3(2)V=(3)8000m3【解析】(1)此题根据函数图象为双曲线的一支,可设V=,再把点(12,4000)代入即可求出答案;(2)此题根据点(12,4000)在此函数图象上,利用待定系数法求出函数的解析式;(3)此题须把t=6代入函数的解析式即可求出每小时的排水量;【详解】(1)设V=.∵点(12,4000)在此函数图象上,∴蓄水量为12×4000=48000m3;(2)∵点(12,4000)在此函数图象上,∴4000=,k=48000,∴此函数的解析式V=;(3)∵当t=6时,V==8000m3;∴每小时的排水量应该是8000m3.【点睛】主要考查了反比例函数的应用.解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式.会用不等式解决实际问题.20、证明见解析【解析】试题分析:由AD是中线以及CD2=BE·BA可得,从而可得△BED∽△BDA,根据相似三角形的性质问题得证.试题解析:∵AD是中线,∴BD=CD,又CD2=BE·BA,∴BD2=BE·BA,即,又∠B=∠B,∴△BED∽△BDA,∴,∴ED·AB=AD·BD.【点睛】本题考查了相似三角形的判定与性质,根据已知得到△BED∽△BDA是解决本题的关键.21、【分析】根据特殊角的三角函数值与二次根式的运算法则即可求解.【详解】解:原式====.【点睛】此题主要考查实数的运算,解题的关键是熟知特殊角的三角函数值.22、S四边形ADBC=49(cm2).【分析】根据直径所对的角是90°,判断出△ABC和△ABD是直角三角形,根据圆周角∠ACB的平分线交⊙O于D,判断出△ADB为等腰直角三角形,根据勾股定理求出AD、BD、AC的值,再根据S四边形ADBC=S△ABD+S△ABC进行计算即可.【详解】∵AB为直径,∴∠ADB=90°,又∵CD平分∠ACB,即∠ACD=∠BCD,∴,∴AD=BD,∵直角△ABD中,AD=BD,AD2+BD2=AB2=102,则AD=BD=5,则S△ABD=AD•BD=×5×5=25(cm2),在直角△ABC中,AC==6(cm),则S△ABC=AC•BC=×6×8=24(cm2),则S四边形ADBC=S△ABD+S△ABC=25+24=49(cm2).【点睛】本题考查了圆周角定理、三角形的面积等,正确求出相关的数值是解题的关键.23、(1)y=﹣x2+x+2;(2);(3)存在一点P或,使它到x轴的距离为1【分析】(1)先根据一次函数的解析式求出A和C的坐标,再将点A和点C的坐标代入二次函数解析式即可得出答案;(2)先求出顶点D的坐标,再过D点作DM平行于y轴交AC于M,再分别以DM为底求△ADM和△DCM的面积,相加即可得出答案;(3)令y=1或y=-1,求出x的值即可得出答案.【详解】解:(1)直线y=﹣x+2中,当x=0时,y=2;当y=0时,0=﹣x+2,解得x=1∴点A、C的坐标分别为(0,2)、(1,0),把A(0,2)、C(1,0)代入解得,故抛物线的表达式为:y=﹣x2+x+2;(2)y=﹣x2+x+2∴抛物线的顶点D的坐标为,如图1,设直线AC与抛物线的对称轴交于点M直线y=﹣x+2中,当x=时,y=点M的坐标为,则DM=∴△DAC的面积为=;(3)当P到x轴的距离为1时,则①当y=1时,﹣x2+x+2=1,而,所以方程没有实数根②当y=-1时,﹣x2+x+2=-1,解得则点P的坐标为或;综上,存在一点P或,使它到x轴的距离为1.【点睛】本题考查的是二次函数,难度适中,需要熟练掌握“铅垂高、水平宽”的方法来求面积.24、(1)图详见解析,50,600;(2).【分析】(1)由“非常了解”的人数及其所占百分比求得总人数,继而由各了解程度的人数之和等于总人数求得“不了解”的人数,用总人数乘以样本中“不了解”人数所占比例可得;(2)分别用树状图和列表两种方法表示出所有等可能结果,从中找到恰好抽到2名男生的结果数,利用概率公式计算可得.【详解】解:(1)本次调查的学生总人数为4÷8%=50人,则不了解的学生人数为50﹣(4+11+20)=15人,∴估计该校2000名学生中“不了解”的人数约有2000×=600人,补图如下:故答案为:50、600;(2)画树状

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论