版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.以下列长度的线段为边,可以作一个三角形的是A.6cm,16cm,21cm B.8cm,16cm,30cmC.6cm,16cm,24cm D.8cm,16cm,24cm2.下列运算不正确的是()A.x2•x3=x5 B.(x2)3=x6 C.x3+x3=2x6 D.(﹣2x)3=﹣8x33.如图,在中,,分别以顶点,为圆心,大于长为半径作弧,两弧交于点,,作直线交于点.若,,则长是()A.7 B.8 C.12 D.134.如图,,点在线段上,点在线段上,,,则的长度为()A. B. C. D.无法确定5.下列说法中正确的个数是()①当a=﹣3时,分式的值是0②若x2﹣2kx+9是完全平方式,则k=3③工程建筑中经常采用三角形的结构,这是利用三角形具有稳定性的性质④在三角形内部到三边距离相等的点是三个内角平分线的交点⑤当x≠2时(x﹣2)0=1⑥点(﹣2,3)关于y轴对称的点的坐标是(﹣2,﹣3)A.1个 B.2个 C.3个 D.4个6.如图,在中,点是边上一点,,过点作交于,若是等腰三角形,则下列判断中正确的是()A. B. C. D.7.若,则a与4的大小关系是()A.a=4 B.a>4 C.a≤4 D.a≥48.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,这两个对应三角形(如图)的对应点所具有的性质是().A.对应点所连线段都相等 B.对应点所连线段被对称轴平分C.对应点连线与对称轴垂直 D.对应点连线互相平行9.矩形的面积为18,一边长为,则另一边长为()A. B. C. D.2410.在△ABC中,能说明△ABC是直角三角形的是()A.∠A∶∠B∶∠C=1∶2∶2 B.∠A∶∠B∶∠C=3∶4∶5C.∠A∶∠B∶∠C=1∶2∶3 D.∠A∶∠B∶∠C=2∶3∶4二、填空题(每小题3分,共24分)11.一个正数的平方根分别是和,则__.12.计算:的结果是_____.13.已知,则的值为_______.14.如果正多边形的一个外角为45°,那么它的边数是_________.15.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是________________16.已知一次函数的图像经过点(m,1),则m=____________.17.下面是一个按某种规律排列的数阵:根据数阵排列的规律,第5行从左向右第5个数为______,第n(n≥3,且n是整数)行从左向右数第5个数是______.(用含n的代数式表示).18.一个正数的平方根分别是和,则=__________.三、解答题(共66分)19.(10分)已知2是的平方根,是的立方根,求的值.20.(6分)如图,平分,平分外角,.(1)求证:;(2)若,求的度数.21.(6分)如图,在坐标系的网格中,且三点均在格点上.(1)C点的坐标为;(2)作关于y轴的对称三角形;(3)取的中点D,连接A1D,则A1D的长为.22.(8分)已知:如图,在矩形ABCD中,AB=6,BC=8,E为直线BC上一点.(1)如图1,当E在线段BC上,且DE=AD时,求BE的长;(2)如图2,点E为BC延长长线上一点,若BD=BE,连接DE,M为ED的中点,连接AM,CM,求证:AM⊥CM;(3)如图3,在(2)条件下,P,Q为AD边上的两个动点,且PQ=5,连接PB、MQ、BM,求四边形PBMQ的周长的最小值.23.(8分)如图,平面直角坐标系xoy中A(﹣4,6),B(﹣1,2),C(﹣4,1).(1)作出△ABC关于直线x=1对称的图形△A1B1C1并写出△A1B1C1各顶点的坐标;(2)将△A1B1C1向左平移2个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;(3)观察△ABC和△A2B2C2,它们是否关于某直线对称?若是,请指出对称轴,并求△ABC的面积.24.(8分)已知:如图,在△ABC中,点A的坐标为(﹣4,3),点B的坐标为(﹣3,1),BC=2,BC∥x轴.(1)画出△ABC关于y轴对称的图形△A1B1C1;并写出A1,B1,C1的坐标;(2)求以点A、B、B1、A1为顶点的四边形的面积.25.(10分)如图,已知在ABC中,AB=AC=5,BC=6,点M在△ABC内,AM平分∠BAC.点E与点M在AC所在直线的两侧,AE⊥AB,AE=BC,点N在AC边上,CN=AM,连接ME、BN;(1)根据题意,补全图形;(2)ME与BN有何数量关系,判断并说明理由;(3)点M在何处时BM+BN取得最小值?请确定此时点M的位置,并求出此时BM+BN的最小值.26.(10分)在平面直角坐标系网格中,格点A的位置如图所示:(1)若点B坐标为(2,3),请你画出△AOB;(2)若△AOB与△A′O′B′关于y轴对称,请你画出△A′O′B';(3)请直接写出线段AB的长度.
参考答案一、选择题(每小题3分,共30分)1、A【分析】利用两条短边之和大于第三边来逐一判断四个选项给定的三条边长能否组成三角形,此题得解.【详解】A、∵6+16=22>21,∴6、16、21能组成三角形;B、∵8+16=24<30,∴8、16、30不能组成三角形;C、∵6+16=22<24,∴6、16、24不能组成三角形;D、∵8+16=24,∴8、16、24不能组成三角形.故选:A.【点睛】本题考查了三角形三边关系,牢记三角形的三边关系是解题的关键.2、C【解析】A.∵x2•x3=x5,故正确;B.∵(x2)3=x6,故正确;C.∵x3+x3=2x3,故不正确;D.∵(﹣2x)3=﹣8x3,故正确;故选C.3、B【分析】根据垂直平分线的判定和性质,得到AD=BD,即可得到BC的长度.【详解】解:根据题意可知,直线MN是AB的垂直平分线,∴BD=AD=5,∴BC=BD+CD=5+3=8;故选:B.【点睛】本题考查了线段垂直平分线的判定和性质,解题的关键是熟练掌握垂直平分线的性质定理进行解题.4、C【解析】根据题意利用全等三角形的性质进行分析,求出的长度即可.【详解】解:∵,∴∵,,∴.故选:C.【点睛】本题考查全等三角形的性质,熟练掌握并利用全等三角形的性质进行等量代换是解题的关键.5、C【解析】根据分式有意义的条件、完全平方公式、三角形的稳定性、内心的性质、非零数的零指数幂及关于坐标轴对称的点的坐标特点分别判断可得.【详解】解:①当a=﹣3时,分式无意义,此说法错误;②若x2﹣2kx+9是完全平方式,则k=±3,此说法错误;③工程建筑中经常采用三角形的结构,这是利用三角形具有稳定性的性质,此说法正确;④在三角形内部到三边距离相等的点是三个内角平分线的交点,此说法正确;⑤当x≠2时(x﹣2)0=1,此说法正确;⑥点(﹣2,3)关于y轴对称的点的坐标是(2,3),此说法错误;故选:C.【点睛】考查分式的值为零的条件,解题的关键是掌握分式有意义的条件、完全平方公式、三角形的稳定性、内心的性质、非零数的零指数幂及关于坐标轴对称的点的坐标特点.6、B【解析】根据等腰三角形的性质得到根据垂直的性质得到根据等量代换得到又即可得到根据同角的余角相等即可得到.【详解】,,从而是等腰三角形,,故选:B.【点睛】考查等腰三角形的性质,垂直的性质,三角形的内角和定理,掌握同角的余角相等是解题的关键.7、D【分析】根据二次根式的性质可得a-4≥0,即可解答.【详解】解:由题意可知:a﹣4≥0,∴a≥4,故答案为D.【点睛】本题考查了二次根式的性质,掌握二次根式的非负性是解答本题的关键.8、B【分析】直接利用轴对称图形的性质得出对应点之间的关系.【详解】轴对称图形是把图形沿着某条直线对折,直线两旁的部分能够完全重合的图形,而这条直线叫做对称轴,由题意知,两图形关于直线对称,则这两图形的对应点连线被对称轴直线垂直平分,当图形平移后,两图形的对应点连线只被对称轴直线平分.故选B.【点睛】本题主要考查轴对称图形的性质,熟悉掌握性质是关键.9、C【分析】根据矩形的面积得出另一边为,再根据二次根式的运算法则进行化简即可.【详解】解:∵矩形的面积为18,一边长为,
∴另一边长为=,
故选:C.【点睛】本题考查矩形的面积和二次根式的除法,能根据二次根式的运算法则进行化简是解题的关键.10、C【分析】根据三角形的内角和公式分别求得各角的度数,从而判断其形状.【详解】、设三个角分别为、、,根据三角形内角和定理得三个角分别为:、、,不是直角三角形;、设三个角分别为、、,根据三角形内角和定理得三个角分别为:、、,不是直角三角形;、设三个角分别为、、,根据三角形内角和定理得三个角分别为:、、,是直角三角形;、设三个角分别为、、,根据三角形内角和定理得三个角分别为:、、,不是直角三角形;故选.【点睛】此题主要考查了三角形的内角和定理,要熟练掌握,解答此题的关键是要明确:三角形的内角和是.二、填空题(每小题3分,共24分)11、1.【分析】根据正数的两个平方根互为相反数可得关于x的方程,解方程即可得.【详解】根据题意可得:x+1+x﹣5=0,解得:x=1,故答案为1.【点睛】本题主要考查了平方根的定义和性质,熟练掌握平方根的定义和性质是解题的关键.12、【分析】逆用积的乘方运算法则以及平方差公式即可求得答案.【详解】===(5-4)2018×=+2,故答案为+2.【点睛】本题考查了积的乘方的逆用,平方差公式,熟练掌握相关的运算法则是解题的关键.13、24【解析】试题解析:故答案为14、8【详解】正多边形的一个外角为45°,那么它的边数是故答案为15、【解析】由图形可得:16、-1【分析】把(m,1)代入中,得到关于m的方程,解方程即可.【详解】解:把(m,1)代入中,得
,解得m=-1.
故答案为:-1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题方法一般是代入这个点求解.17、;.【分析】观察不难发现,每一行的数字的个数为连续的奇数,且被开方数为相应的序数,然后求解即可.【详解】由图可知,第5行从左向右数第5个数的被开方数为16+5=21,
所以为;
前n-1行数的个数为1+3+5+…+2n-1==(n-1)2=n2-2n+1,
∴第n(n≥3,且n是整数)行从左向右数第5个数是.
故答案为:;.【点睛】此题考查规律型:数字变化类,观察出每一行的数字的个数为连续的奇数,且被开方数为相应的序数是解题的关键.18、1【分析】一个正数有两个平方根,它们互为相反数,根据平方根的性质即可解答.【详解】由题意得:2x+3+x-6=0,得x=1,故答案为:1.【点睛】此题考查利用平方根解一元一次方程,熟记平方根的性质列出方程即可解答问题.三、解答题(共66分)19、【分析】根据平方根、立方根的定义列出方程组,即可求解.【详解】解:由题意可知①+②可得,【点睛】此题主要考查实数的性质,解题的关键是熟知平方根、立方根的定义.20、(1)详见解析;(2).【分析】(1)由已知条件可得,根据同位角相等,两直线平行即可得;(2)根据角平分线的定义,可得出,,再根据外角的性质可得与,通过角度的计算可得出答案.【详解】(1)证明:∵平分外角,∴,又∵,∴,∴.(2)解:∵BE、CE分别是△ABC内角∠ABC和外角∠ACD的平分线,∴,,又∵∠ACD是△ABC的外角,∴,∴∵∠ECD是△BCE的外角,∴∴,∵∠A=50°,∴.【点睛】本题考查了角平分线的定义和三角形外角的性质,熟练运用三角形外角的性质进行角度的计算是解题的关键.21、(1)(4,-2);(2)作图见解析;(3).【分析】(1)根据图象可得C点坐标;(2)根据关于y轴对称的点,横坐标互为相反数,纵坐标相等描出三个顶点,再依次连接即可;(3)先利用勾股定理逆定理证明为直角三角形,再根据直角三角形斜边上的中线等于斜边的一半即可求得A1D.【详解】解:(1)由图可知,C(4,-2)故答案为:(4,-2);(2)如图所示,(3)由图可知,∴,即为直角三角形,∴.
故答案为:.【点睛】本题考查坐标与图形变化轴对称,勾股定理逆定理,直角三角形斜边上的中线.(3)中能证明三角形为直角三角形,并理解直角三角形斜边上的中线等于斜边的一半是解题关键.22、(1)BE=8﹣2;(2)证明见解析;(3)+5+3.【分析】(1)先求出DE=AD=4,最后用勾股定理即可得出结论;(2)先判断出∠BMD=90°,再判断出△ADM≌△BCM得出∠AMD=∠BMC,即可得出结论;(3)由于BM和PQ是定值,只要BP+QM最小,利用对称确定出MG'就是BP+QM的最小值,最后利用勾股定理即可得出结论.【详解】解:(1)如图1中,∵四边形ABCD是矩形,∴∠C=90°,CD=AB=6,AD=BC=8,∴DE=AD=8,在Rt△CDE中,CE=,∴BE=BC﹣CE=8﹣2;(2)如图2,连接BM,∵点M是DE的中点,∴DM=EM,∵BD=BE,∴BM⊥DE,∴∠BMD=90°,∵点M是Rt△CDE的斜边的中点,∴DM=CM,∴∠CDM=∠DCM,∴∠ADM=∠BCM在△ADM和△BCM中,,∴△ADM≌△BCM(SAS),∴∠AMD=∠BMC,∴∠AMC=∠AMB+∠BMC=∠AMB+∠AMD=∠BMD=90°,∴AM⊥CM;(3)如图3中,过点Q作QG∥BP交BC于G,作点G关于AD的对称点G',连接QG',当点G',Q,M在同一条线上时,QM+BP最小,而PQ和BM是定值,∴此时,四边形PBMQ周长最小,∵QG∥PB,PQ∥BG,∴四边形BPQG是平行四边形,∴QG=BP,BG=PQ=5,∴CG=3,如图2,在Rt△BCD中,CD=6,BC=8,∴BD=10,∴BE=10,∴BG=BE﹣BG=5,CE=BE﹣BC=2,∴HM=1+3=4,HG=CD=3,在Rt△MHG'中,HG'=6+3=9,HM=4,∴MG'=,在Rt△CDE中,DE=,∴ME=,在Rt△BME中,BM==3,∴四边形PBMQ周长最小值为BP+PQ+MQ+BM=QG+PQ+QM+BM=MG'+PQ+PM=+5+3,【点睛】本题是一道四边形综合题,主要考查了矩形的性质、勾股定理、全等三角形的判定和性质、等腰三角形的性质,确定BP+QM的最小值是解答本题的关键.23、(1)作图见解析,A1(6,6),B1(3,2),C1(6,1);(2)作图见解析,A2(4,6),B2(1,2),C2(4,1);(3)△ABC和△A2B2C2关于y轴对称,△ABC的面积=7.1.【分析】(1)根据题意分别作出三顶点关于直线x=1的对称点,再顺次连接即可得;(2)由题意将△A1B1C1的三个顶点分别向左平移,再顺次连接即可得;(3)由题意观察图形即可得,再利用三角形的面积公式求解可得.【详解】解:(1)如图所示,△A1B1C1即为所求,A1(6,6),B1(3,2),C1(6,1).(2)如上图所示,△A2B2C2即为所求,A2(4,6),B2(1,2),C2(4,1);(3)△ABC和△A2B2C2关于y轴对称,△ABC的面积为1×3=7.1.【点睛】本题考查的是作图-轴对称变换,熟练掌握轴对称的性质是解答此题的关键.24、(1)见解析;(2)14.【解析】(1)先求得C点坐标,再根据关于y轴对称的坐标特征标出A1,B1,C1,然后连线即可;(2)过A点作AD⊥BC,交CB的延长线于点D,然后根据梯形的面积公式求解即可.【详解】解:(1)根据题意可得:点C坐标为(﹣1,1),如图所示:则A1的坐标是(4,3),B1的坐标是(3,1),C1的坐标(1,1);(2)过A点作AD⊥BC,交CB的延长线于点D,由(1)可得AA′=2×4=8,BB′=2×3=6,AD=2,∴梯形ABB′A′的面积=(AA′+BB′)•AD=×(8+6)×2=14.【点睛】本题考查画轴对称图形,梯形的面积公式等,解此题的关键在于熟记关于坐标轴对称的点的坐标特征.25、(1)见解析;(2)ME=BN,理由见解析;(3)当B,M,E三点共线时,BM+BN的最小值是.【分析】(1)根据题意补全图形即可;(2)如图1,延长AM交BC于点F,根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版城市物流配送承包合同3篇
- 电子产品制造安全用品规定
- 2025个人租房合同范本标准版
- 食品安全厨师聘用合同模板
- 乙供物资供应商质量管理体系
- 2025版商铺转租与新能源技术应用合同范本3篇
- 2025版风电项目用地租赁合同3篇
- 2025版虫草保健品原料供应合同2篇
- 2025版冷链物流快递业务承包管理合同3篇
- 2024年货物买卖合同标的及权益说明
- (八省联考)云南省2025年普通高校招生适应性测试 物理试卷(含答案解析)
- 【8地RJ期末】安徽省合肥市肥西县2023-2024学年八年级上学期期末考试地理试题(含解析)
- 2024年副班主任工作总结(3篇)
- 课题申报书:古滇青铜文化基因图谱构建及活态深化研究
- GB/T 44979-2024智慧城市基础设施紧凑型城市智慧交通
- 统编版2024-2025学年第一学期四年级语文期末学业质量监测试卷(含答案)
- 北师大版七年级上册数学期末考试试题附答案
- 2024年城乡学校结对帮扶工作总结范例(3篇)
- 房地产法律风险防范手册
- 理论力学知到智慧树章节测试课后答案2024年秋浙江大学
- 小红书食用农产品承诺书示例
评论
0/150
提交评论