湖北省孝感市八校2022-2023学年八年级数学第一学期期末学业质量监测试题含解析_第1页
湖北省孝感市八校2022-2023学年八年级数学第一学期期末学业质量监测试题含解析_第2页
湖北省孝感市八校2022-2023学年八年级数学第一学期期末学业质量监测试题含解析_第3页
湖北省孝感市八校2022-2023学年八年级数学第一学期期末学业质量监测试题含解析_第4页
湖北省孝感市八校2022-2023学年八年级数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.若关于的不等式的整数解共有个,则的取值范围是()A. B. C. D.2.在平面直角坐标系中,点M(2,-1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.直线y=ax+b经过第一、二、四象限,则直线y=bx﹣a的图象只能是图中的()A. B. C. D.4.如果把分式中的、同时扩大为原来的2倍,那么得到的分式的值()A.不变 B.缩小到原来的C.扩大为原来的2倍 D.扩大为原来的4倍5.如图,中,,,平分,若,则点到线段的距离等于()A.6 B.5 C.8 D.106.下列实数中,无理数是()A. B.-0.3 C. D.7.在一次数学测验中,甲、乙、丙、丁四位同学的分数分别是90、x、90、70,若这四个同学得分的众数与平均数恰好相等,则他们得分的中位数是()A.100 B.90 C.80 D.708.若,则的值是()A. B. C.3 D.69.在式子,,,中,分式的个数是()A.1 B.2 C.3 D.410.已知一组数据,,,,的众数是,那么这组数据的方差是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,若和的面积分别为、,则_____(用“>”、“=”或“<”来连接).12.如图,有一种动画程序,屏幕上正方形是黑色区域(含正方形边界),其中四个顶点的坐标分别为、、、,用信号枪沿直线发射信号,当信号遇到黑色区域时,区域便由黑变白,则能使黑色区域变白的b的取值范围为_________.13.若为三角形的三边,且满足,第三边为偶数,则=__________.14.已知直线x+2y=5与直线x+y=3的交点坐标是(1,2),则方程组的解是_________.15.如图,在四边形ABDC中,E、F、G、H分别为AB、BC、CD、DA的中点,并且E、F、G、H四点不共线.当AC=6,BD=8时,四边形EFGH的周长是_____.16.已知△ABC是边长为6的等边三角形,过点B作AC的垂线l,垂足为D,点P为直线l上的点,作点A关于CP的对称点Q,当△ABQ是等腰三角形时,PD的长度为___________17.已知,则的值为________.18.______________.三、解答题(共66分)19.(10分)如图所示,三点在同一条直线上,和为等边三角形,连接.请在图中找出与全等的三角形,并说明理由.20.(6分)(1)解方程:(2)2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南一北京西”全程大约千米,“复兴号”次列车平均每小时比某列“和谐号”列车多行驶千米,其行驶时间是该列“和谐号”列车行驶时间的(两列车中途停留时间均除外).经查询,“复兴号”次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”次列车从太原南到北京西需要多长时间.21.(6分)阅读下列推理过程,在括号中填写理由.如图,点、分别在线段、上,,交于点,平分,求证:平分.证明:∵平分(已知)∴(______)∵(已知)∴(______)故(______)∵(已知)∴(______)∴(______)∴(等量代换)∴平分(______)22.(8分)抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较强抗震功能的A、B两仓库.已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为70吨,B库的容量为110吨.从甲、乙两库到A、B两库的路程和运费如下表:(表中“元/吨•千米”表示每吨粮食运送1千米所需人民币)路程(千米)运费(元/吨•千米)甲库乙库甲库乙库A库20151212B库2520108(1)若甲库运往A库粮食x吨,请写出将粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式;(2)当甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?23.(8分)如图,在平行四边形ABCD中,AD=30,CD=10,F是BC的中点,P以每秒1个单位长度的速度从A向D运动,到D点后停止运动;Q沿着路径以每秒3个单位长度的速度运动,到D点后停止运动.已知动点P,Q同时出发,当其中一点停止后,另一点也停止运动.设运动时间为t秒,问:(1)经过几秒,以A,Q,F,P为顶点的四边形是平行四边形(2)经过几秒,以A,Q,F,P为顶点的四边形的面积是平行四边形ABCD面积的一半?24.(8分)某校开展“我最喜爱的一项体育活动”调查活动,要求每名学生必选且只能选一项现随机抽查了名学生,并将其结果绘制成如下不完整的条形统计图和扇形统计图.请结合以上信息解答下列问题:(1)______;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为______;(4)已知该校共有3200名学生,请你估计该校最喜爱跑步活动的学生人数.25.(10分)在综合实践课上,老师以“含30°的三角板和等腰三角形纸片”为模具与同学们开展数学活动.已知,在等腰三角形纸片ABC中,CA=CB=5,∠ACB=120°,将一块含30°角的足够大的直角三角尺PMN(∠M=90°,∠MPN=30°)按如图所示放置,顶点P在线段BA上滑动(点P不与A,B重合),三角尺的直角边PM始终经过点C,并与CB的夹角∠PCB=α,斜边PN交AC于点D.(1)特例感知当∠BPC=110°时,α=°,点P从B向A运动时,∠ADP逐渐变(填“大”或“小”).(2)合作交流当AP等于多少时,△APD≌△BCP,请说明理由.(3)思维拓展在点P的滑动过程中,△PCD的形状可以是等腰三角形吗?若可以,请求出夹角α的大小;若不可以,请说明理由.26.(10分)如图,在△ABC中,AC=21,BC=13,D是AC边上一点,BD=12,AD=1.(1)求证:BD⊥AC.(2)若E是边AB上的动点,求线段DE的最小值.

参考答案一、选择题(每小题3分,共30分)1、D【分析】首先确定不等式组的解集,先利用含m的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m的不等式,从而求出m的范围.【详解】解不等式,由①式得,,由②式得,即故的取值范围是,故选D.【点睛】本题考查不等式组的整数解问题,利用数轴就能直观的理解题意,列出关于m的不等式组,再借助数轴做出正确的取舍.2、D【分析】根据点的横坐标2>0,纵坐标﹣1<0,可判断这个点在第四象限.【详解】∵点的横坐标2>0为正,纵坐标﹣1<0为负,∴点在第四象限.故选D.【点睛】本题考查点在直角坐标系上的象限位置,解题的关键是熟练掌握各象限的横纵坐标符号.3、B【解析】试题分析:已知直线y=ax+b经过第一、二、四象限,所以a<0,b>0,即可得直线y=bx﹣a的图象经过第一、二、三象限,故答案选B.考点:一次函数图象与系数的关系.4、B【分析】根据分式的基本性质即可求出答案.【详解】解:;∴得到的分式的值缩小到原来的;故选:B.【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.5、B【分析】过点D作DE⊥AB于E,根据角平分线的性质和直角三角形的性质可得DC=DE,∠ABC=30°,然后根据30°所对的直角边是斜边的一半可得BD=2DE,最后根据BD+DC=BC和等量代换即可求出DE的长.【详解】解:过点D作DE⊥AB于E,∵平分,∠C=90°,∴DC=DE,∠ABC=90°-∠BAC=30°在Rt△BDE中,BD=2DE∵BD+DC=BC=11∴2DE+DE=11解得:DE=1,即点到线段的距离等于1.故选B.【点睛】此题考查的是角平分线的性质和直角三角形的性质,掌握角平分线的性质、直角三角形的两个锐角互余和30°所对的直角边是斜边的一半是解决此题的关键.6、C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A、是有理数,故A错误;

B、-0.3是有理数,故B错误;

C、是无理数,故C正确;

D、=3,是有理数,故D错误;

故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.7、B【解析】试题分析:因为x的值不确定,所以众数也不能直接确定,需分类讨论:①x=90;②x=1;③x≠90且x≠1.①x=90时,众数是90,平均数,所以此情况不成立,即x≠90;②x=1时,众数是90和1,而平均数=80,所以此情况不成立,即x≠1;③x≠90且x≠1时,众数是90,根据题意得,解得,所以中位数是,故选B.考点:本题主要考查了平均数、中位数及众数的应用点评:掌握概念进行分类讨论是此题的关键.注意中位数的确定方法:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8、A【分析】将分式的分子和分母同时除以x,然后利用整体代入法代入求值即可.【详解】解:===将代入,得原式=故选A.【点睛】此题考查的是分式的化简求值题,掌握分式的基本性质是解决此题的关键.9、B【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】,分母中均不含有字母,因此它们是整式,而不是分式.其余两个式子的分母中含有字母,因此是分式.故选:B.【点睛】本题考查了分式的定义,特别注意π不是字母,是常数,所以不是分式,是整式.10、A【分析】由题意根据众数的概念,确定x的值,再求该组数据的方差即可.【详解】解:因为一组数据10,1,9,x,2的众数是1,所以x=1.于是这组数据为10,1,9,1,2.该组数据的平均数为:(10+1+9+1+2)=1,方差S2=[(10-1)2+(1-1)2+(9-1)2+(1-1)2+(2-1)2]==2.1.故选:A.【点睛】本题考查平均数、众数、方差的意义.①平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”;②众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个;③方差是用来衡量一组数据波动大小的量.二、填空题(每小题3分,共24分)11、=【分析】过A点作,过F点作,可证,得到,再根据面积公式计算即可得到答案.【详解】解:过A点作,过F点作..在与中....,..故答案:=【点睛】本题主要考查了三角形的全等判定和性质,以及三角形的面积公式,灵活运用全等三角形的判定和性质是解题的关键.12、-3≤b≤1【分析】求出直线y=2x+b分别经过B,D点时,b的值,即可求出所求的范围.【详解】由题意可知当直线y=2x+b经过B(2,1)时b的值最小,即2×2+b=1,b=-3;当直线y=2x+b过C(1,2)时,b最大即2=2×1+b,b=1,∴能够使黑色区域变白的b的取值范围为-3≤b≤1.【点睛】根据所给一次函数的图像的特点,找到边界点即为解此类题的常用方法.13、3【分析】先根据非负数的性质求出a和b的值,再根据三角形三边关系求出c的取值范围,进而求出c的值.【详解】∵a、b满足(b﹣1)1=0,∴a=3,b=1.∵a、b、c为三角形的三边,∴8<c<11.∵第三边c为偶数,∴c=3.故答案为:3.【点睛】本题考查了三角形三边关系以及非负数的性质,解答本题的关键是求出a和b的值,此题难度不大.14、【详解】解:∵直线x+2y=5与直线x+y=3的交点坐标是(1,2),∴方程组的解为【点睛】本题考查一次函数与二元一次方程(组),利用数形结合思想解题是关键.15、14【分析】根据三角形中位线定理得到FG∥EH,FG=EH,根据平行四边形的判定定理和周长解答即可.【详解】∵F,G分别为BC,CD的中点,∴FG=BD=4,FG∥BD,∵E,H分别为AB,DA的中点,∴EH=BD=4,EH∥BD,∴FG∥EH,FG=EH,∴四边形EFGH为平行四边形,∴EF=GH=AC=3,∴四边形EFGH的周长=3+3+4+4=14,故答案为14【点睛】本题考查的是三角形中位线定理,掌握三角形中位线定理和平行四边形的判定定理是解题的关键.16、、、或【分析】先根据题意作图,再分①当②当③当④当时四种情况根据等边三角形的性质及对称性分别求解.【详解】∵点A、Q关于CP对称,∴CA=CQ,∴Q在以C为圆心,CA长为半径的圆上∵△ABQ是等腰三角形,∴Q也在分别以A、B为圆心,AB长为半径的两个圆上和AB的中垂线上,如图①,这样的点Q有4个。(1)当时,如图②,过点做∵点A、Q关于CP对称,∴,又∵,∴,∴∵∠OCD=30°,BD⊥AC∴,,∴∴∴(2)当时,如图③同理可得,∴∴(3)当时,如图④是等边三角形,,∴(4)当时,如图⑤是等边三角形,点与点B重合,∴故填:、、或【点睛】此题主要考查等边三角形的性质及对称性的应用,解题的关键是熟知等边三角形的性质及对称性,再根据题意分情况讨论.17、1【分析】逆用同底数幂的乘法公式进行变形,然后代入即可得出答案.【详解】故答案为:1.【点睛】本题主要考查同底数幂的乘法的逆用,掌握同底数幂的乘法法则是解题的关键.18、【分析】根据零指数幂和负整数指数幂分别化简,再相乘.【详解】解:,故答案为:.【点睛】本题考查了有理数的乘法运算,涉及到零指数幂和负整数指数幂,解题的关键是掌握零指数幂和负整数指数幂的计算方法.三、解答题(共66分)19、△ACD≌△BCE,理由见解析.【分析】由题意根据全等三角形的判定与性质结合等边三角形的性质从而证明△ACD≌△BCE即可.【详解】解:△ACD≌△BCE,理由如下:∵△ABC和△CDE是等边三角形,∴AC=BC,CD=CE,∠ACB=∠ECD=60°,∵∠BCE=180°-∠ECD=120°,∠ACD=180°-∠ACB=120°,∴∠BCE=∠ACD,在△ACD和△BCE中,,∴△ACD≌△BCE.【点睛】本题考查了全等三角形的判定与性质的运用,解答时结合等边三角形的性质的运用证明三角形全等是解答的关键.20、(1)无解;(2)小时【分析】(1)根据解分式方程的一般步骤解方程即可;(2)设“复兴号”次列车从太原南到北京西的行驶时间需要小时,则“和谐号”列车的行驶时间需要小时,根据题意,列出分式方程即可求出结论.【详解】解:解方程:两边同乘以得解得检验:当时,原方程中分式和的分母的值为零,所以是原方程的增根,因此,原方程无解.设“复兴号”次列车从太原南到北京西的行驶时间需要小时,则“和谐号”列车的行驶时间需要小时,根据题意得:解得经检验,是原分式方程的解,答:乘坐“复兴号”次列车从太原南到北京西需要小时.【点睛】此题考查的是解分式方程和分式方程的应用,掌握解分式方程的一般步骤和实际问题中的等量关系是解决此题的关键.21、角平分线的定义;两直线平行,内错角相等;等量代换;两直线平行,同位角相等;两直线平行,内错角相等;角平分线的定义【分析】根据角平分线的定义得到∠1=∠2,根据平行线的性质得到∠1=∠3,等量代换得到∠2=∠3,根据平行线的性质得到∠2=∠5,等量代换即可得到结论;【详解】证明:∵平分(已知),∴(角平分线的定义),∵(已知),∴(两直线平行,内错角相等),故(等量代换),∵(已知),∴(两直线平行,同位角相等),∴(两直线平行,内错角相等),∴(等量代换),∴平分(角平分线的定义);【点睛】本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.22、(1)y=-30x+39200(0≤x≤1);(2)从甲库运往A库1吨粮食,往B库运送30吨粮食,从乙库运往A库0吨粮食,从乙库运往B库80吨粮食时,总运费最省为37100元【解析】试题分析:弄清调动方向,再依据路程和运费列出y(元)与x(吨)的函数关系式,最后可以利用一次函数的增减性确定“最省的总运费”.试题解析:(1)依题意有:若甲库运往A库粮食x吨,则甲库运到B库(100-x)吨,乙库运往A库(1-x)吨,乙库运到B库(10+x)吨.则,解得:0≤x≤1.y=12×20x+10×25(100-x)+12×15(1-x)+8×20×[110-(100-x)]=-30x+39200其中0≤x≤1(2)上述一次函数中k=-30<0∴y随x的增大而减小∴当x=1吨时,总运费最省最省的总运费为:-30×1+39200=37100(元)答:从甲库运往A库1吨粮食,往B库运送30吨粮食,从乙库运往A库0吨粮食,从乙库运往B库80吨粮食时,总运费最省为37100元.23、(1)秒或秒;(2)15秒【分析】(1)Q点必须在BC上时,A,Q,F,P为顶点的四边形才能是平行四边形,分Q点在BF和Q点在CF上时分类讨论,利用平行四边形对边相等的性质即可求解;(2)分Q点在AB、BC、CD之间时逐个讨论即可求解.【详解】解:(1)∵以A、Q、F、P为顶点的四边形是平行四边形,且AP在AD上,∴Q点必须在BC上才能满足以A、Q、F、P为顶点的四边形是平行四边形∵四边形ABCD是平行四边形,∴AD=BC=30,AB=CD=10,∵点F是BC的中点,∴BF=CF=BC=15,AB+BF=25,情况一:当Q点在BF上时,AP=FQ,且AP=t,FQ=35-3t,故t=25-3t,解得;情况二:当Q点在CF上时,AP=FQ,且AP=t,FQ=3t-35,故t=3t-25,解得t=;故经过或秒,以A、Q、B、P为顶点的四边形是平行四边形;(2)情况一:当Q点在AB上时,0<t<,此时P点还未运动到AD的中点位置,故四边形AQFP面积小于平行四边形ABCD面积的一半,情况二:当Q点在BC上且位于BF之间时,,此时AP+FQ=t+35-3t=35-2t,∵,∴35-2t<30,四边形AQFP面积小于平行四边形ABCD面积的一半,情况三:当Q点在BC上且位于FC之间时,此时AP+FQ=t+3t-35=4t-35∵,∴4t-35<30,四边形AQFP面积小于平行四边形ABCD面积的一半,情况四:当Q点在CD上时,当AP=BF=15时,t=15,∴,∴当t=15秒时,以A、Q、F、P为顶点的四边形面积是平行四边形ABCD面积的一半,故答案为:15秒.【点睛】本题考查了平行四边形的判定和性质,根据动点的位置不同需要分多种情况分类讨论,熟练掌握平行四边形的性质是解决本题的关键.24、(1)150;(2)答案见解析;(3)36°;(4)1.【解析】(1)根据图中信息列式计算即可;(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;(3)360°×乒乓球”所占的百分比即可得到结论;(4)根据题意用3200乘以最喜爱跑步活动的学生占比计算即可.【详解】(1)m=21÷14%=150,故答案为:150;(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°故答案为:36°;(4)3200×26%=1人,答:估计该校约有1名学生最喜爱跑步活动.【点睛】本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.25、(1)40°,小;(2)当AP=5时,△APD≌△BCP,理由详见解析;(3)当α=45°或90°时,△PCD是等腰三角形.【分析】(1)先根据三角形内角和定理求出∠B的度数,再一次运用三角形内角和定理即可求出的度数;根据三角形内角和定理即可判断点P从B向A运动时,∠ADP的变化情况;(2)先根据三角形外角等于与它不相邻的两个内角和得到∠APC=∠B+α=30°+∠PCB,再证明∠APD=∠BCP,根据全等三角形的判定定理,即可得到当AP=5时,△APD≌△BCP.(3)根据等腰三角形的判定,分三种情况讨论即可得到;【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论