黑龙江省齐齐哈尔市第二十一中学2022-2023学年数学八上期末质量跟踪监视试题含解析_第1页
黑龙江省齐齐哈尔市第二十一中学2022-2023学年数学八上期末质量跟踪监视试题含解析_第2页
黑龙江省齐齐哈尔市第二十一中学2022-2023学年数学八上期末质量跟踪监视试题含解析_第3页
黑龙江省齐齐哈尔市第二十一中学2022-2023学年数学八上期末质量跟踪监视试题含解析_第4页
黑龙江省齐齐哈尔市第二十一中学2022-2023学年数学八上期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.两人在直线跑道上同起点、同终点、同方向匀速跑步400米,先到终点的人原地休息.已知甲先出发2秒,在跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间t(秒)之间的关系如图所示给出以下结论:①;②;③.其中正确的是()A.②③ B.①②③ C.①② D.①③2.下列条件中,不能判定两个直角三角形全等的是()A.两个锐角对应相等 B.一条边和一个锐角对应相等C.两条直角边对应相等 D.一条直角边和一条斜边对应相等3.已知,的值为()A. B. C.3 D.94.如图,四边形ABCD是菱形,∠ABC=120°,BD=4,则BC的长是()A.4 B.5 C.6 D.45.下列图形具有两条对称轴的是()A.等边三角形 B.平行四边形 C.矩形 D.正方形6.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是().A.带其中的任意两块去都可以 B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了 D.带1、4或2、4或3、4去均可7.如图,,,,则度数是()A. B. C. D.8.下列图案是轴对称图形的是().A. B. C. D.9.已知直角三角形纸片的两条直角边长分别为和,过锐角顶点把该纸片剪成两个三角形.若这两个三角形都是等腰三角形,则()A. B.C. D.10.点P(1,﹣2)关于y轴对称的点的坐标是()A.(1,2) B.(﹣1,2) C.(﹣1,﹣2) D.(﹣2,1)11.小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公共汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中正确的是().①小明家和学校距离1200米;②小华乘坐公共汽车的速度是240米/分;③小华乘坐公共汽车后7:50与小明相遇;④小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,他们可以同时到达学校.A.①③④ B.①②③ C.①②④ D.①②③④12.已知某多边形的内角和比该多边形外角和的2倍多,则该多边形的边数是()A.6 B.7 C.8 D.9二、填空题(每题4分,共24分)13.如果表示a、b的实数的点在数轴上的位置如图所示,那么化简|a﹣b|+的结果是_____.14.若代数式的值为零,则x的取值应为_____.15.如图,,于,于,且,则________.16.一个多边形的每个外角都是36°,这个多边形是______边形.17.“两直线平行,内错角相等”的逆命题是__________.18.如图,中,点在上,点在上,点在的延长线上,且,若,则的度数是________.三、解答题(共78分)19.(8分)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b﹣41,且c是△ABC中最长的边,求c的取值范围.20.(8分)如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.21.(8分)山地自行车越来越受中学生的喜爱.一网店经营的一个型号山地自行车,今年一月份销售额为30000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是27000元.(1)求二月份每辆车售价是多少元?(2)为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利35%,求每辆山地自行车的进价是多少元?22.(10分)勾股定理是数学中最常见的定理之一,熟练的掌握勾股数,对迅速判断、解答题目有很大帮助,观察下列几组勾股数:1234…………(1)你能找出它们的规律吗?(填在上面的横线上)(2)你能发现,,之间的关系吗?(3)对于偶数,这个关系(填“成立”或“不成立”)吗?(4)你能用以上结论解决下题吗?23.(10分)(1)﹣(﹣1)2017+﹣|1﹣|(2)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,求点C坐标.24.(10分)计算:(1)·(-3)-2(2)25.(12分)阅读材料:如图1,中,点,在边上,点在上,,,,延长,交于点,,求证:.分析:等腰三角形是一种常见的轴对称图形,几何试题中我们常将一腰所在的三角形沿着等腰三角形的对称轴进行翻折,从而构造轴对称图形.①小明的想法是:将放到中,沿等腰的对称轴进行翻折,即作交于(如图2)②小白的想法是:将放到中,沿等腰的对称轴进行翻折,即作交的延长线于(如图3)经验拓展:等边中,是上一点,连接,为上一点,,过点作交的延长线于点,,若,,求的长(用含,的式子表示).26.化简:(1)(2)(3)(4)

参考答案一、选择题(每题4分,共48分)1、B【分析】易得乙出发时,两人相距8m,除以时间2即为甲的速度;由于出现两人距离为0的情况,那么乙的速度较快.乙80s跑完总路程400可得乙的速度,进而求得80s时两人相距的距离可得b的值,同法求得两人距离为0时,相应的时间,让两人相距的距离除以甲的速度,减2即为c的值.【详解】由函数图象可知,甲的速度为(米/秒),乙的速度为(米/秒),(秒),,故①正确;(米)故②正确;(秒)故③正确;正确的是①②③.故选B.【点睛】本题考查了一次函数的应用,得到甲乙两人的速度是解决本题的突破点,得到相应行程的关系式是解决本题的关键.2、A【分析】直角三角形全等的判定方法:HL,SAS,ASA,SSS,AAS,做题时要结合已知条件与全等的判定方法逐一验证.【详解】A、全等三角形的判定必须有边的参与,故本选项符合题意;B、符合判定ASA或AAS,故本选项正确,不符合题意;C、符合判定SAS,故本选项不符合题意;D、符合判定HL,故本选项不符合题意.故选:A.【点睛】本题考查直角三角形全等的判定方法,判定两个直角三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3、D【分析】先将因式分解,再将代入,借助积的乘方公式(,本题中为逆运用)和平方差公式()求解即可.【详解】解:,将代入,原式=.故选:D.【点睛】本题考查因式分解的应用,积的乘方公式,平方差公式,二次根式的化简求值.解决此题的关键是①综合利用提公因式法和公式法对原代数式进行因式分解;②利用积的乘方公式和平方差公式对代值后的式子进行适当变形.4、A【分析】根据菱形的性质可知对角线平分对角,从而可知∠ABD=∠CBD=60°,从而可知△BCD是等边三角形,进而可知答案.【详解】∵∠ABC=120°,四边形ABCD是菱形∴∠CBD=60°,BC=CD∴△BCD是等边三角形∵BD=4∴BC=4故答案选A.【点睛】本题考查的是菱形的性质,能够掌握菱形的性质是解题的关键.5、C【分析】根据轴对称图形及对称轴的定义,结合所给图形即可作出判断.【详解】A、等边三角形有3条对称轴,故本选项错误;B、平行四边形无对称轴,故本选项错误;C、矩形有2条对称轴,故本选项正确;D、正方形有4条对称轴,故本选项错误,故选C.【点睛】本题考查了轴对称图形及对称轴的定义,常见的轴对称图形有:等腰三角形,矩形,正方形,等腰梯形,圆等等.6、D【解析】试题分析:②④虽没有原三角形完整的边,又没有角,但延长可得出原三角形的形状;带①、④可以用“角边角”确定三角形;带③、④也可以用“角边角”确定三角形.解:带③、④可以用“角边角”确定三角形,带①、④可以用“角边角”确定三角形,带②④可以延长还原出原三角形,故选D.点评:本题考查了全等三角形判定的应用;确定一个三角形的大小、形状,可以用全等三角形的几种判定方法.做题时要根据实际问题找条件.7、C【分析】延长BC交AD于点E,根据三角形外角的性质可求得∠BED=110°,再根据三角形外角的性质得∠BCD=∠BED+∠D,从而可求得∠D的度数.【详解】延长BC交AD于点E,如图所示,∵∠BED=∠B+∠A,且,,∴∠BED=80°+30°=110°,又∵∠BCD=∠BED+∠D,∴∠D=∠BCD-∠BED=130°-110°=20°.故选:C.【点睛】此题主要考查了三角形外角的性质,熟练掌握三角形外角的性质是解此题的关键.8、D【分析】根据轴对称图形的概念求解.【详解】轴对称图形是图形两部分沿对称轴折叠后可重合.A,B,C图都不满足条件,只有D沿某条直线(对称轴)折叠后,图形两部分能重合,故选D.9、B【分析】作图,根据等腰三角形的性质和勾股定理可得,整理即可求解【详解】解:如图,

故选:B.【点睛】考查了等腰直角三角形,等腰三角形的性质,勾股定理,关键是熟练掌握等腰三角形的性质,根据勾股定理得到等量关系.10、C【解析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),故选C.【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.11、D【解析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.【详解】解:由图象可得,小明家和学校距离为1200米,故①正确,小华乘坐公共汽车的速度是1200÷(13﹣8)=240米/分,故②正确,480÷240=2(分),8+2=10(分),则小华乘坐公共汽车后7:50与小明相遇,故③正确,小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,小华从家到学校的所用时间为:1200÷100=12(分),则小华到校时间为8:00,小明到校时间为8:00,故④正确,故选:D.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.12、B【分析】多边形的内角和比外角和的2倍多180°,而多边形的外角和是360°,则内角和是900度,n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.【详解】解:根据题意,得

(n-2)•180=360×2+180,

解得:n=1.

则该多边形的边数是1.

故选:B.【点睛】此题主要考查了多边形内角和定理和外角和定理,只要结合多边形的内角和公式寻求等量关系,构建方程即可求解.二、填空题(每题4分,共24分)13、﹣2b【解析】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣b|+=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a.b都是数轴上的实数,注意符号的变换.14、1.【分析】分式的值为2的条件是:(1)分子=2;(1)分母≠2.两个条件需同时具备,缺一不可.【详解】解:若代数式的值为零,则(x﹣1)=2或(x﹣1)=2,即x=1或1,∵|x|﹣1≠2,x≠1,∴x的取值应为1,故代数式的值为零,则x的取值应为1.【点睛】由于该类型的题易忽略分母不为2这个条件,所以常以这个知识点来命题.15、【分析】根据角平分线性质求出OC平分∠AOB,即可求出答案.【详解】∵CD⊥OA于D,CE⊥OB,CD=CE,∴OC平分∠AOB,∵∠AOB=50°,∴∠DOC=∠AOB=25°,故答案为:25°.【点睛】本题考查了角平分线的判定,注意:在角的内部到角的两边距离相等的点在角的平分线上.16、十【分析】根据正多边形的性质,边数等于360°除以每一个外角的度数.【详解】∵一个多边形的每个外角都是36°,∴n=360°÷36°=10,故答案为:十.【点睛】本题考查多边形内角与外角,掌握多边形的外角和为解题关键.17、内错角相等,两直线平行【解析】解:“两直线平行,内错角相等”的条件是:两条平行线被第三条值线索截,结论是:内错角相等.将条件和结论互换得逆命题为:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,可简说成“内错角相等,两直线平行”.18、70°【分析】根据三角形内角和定理求出x+y=145°,在△FDC中,根据三角形内角和定理求出即可.【详解】解:∵∠DCE=∠DEC,∠DFG=∠DGF,

∴设∠DCE=∠DEC=x,∠DFG=∠DGF=y,

则∠FEG=∠DEC=x,

∵在△GFE中,∠EFG=35°,

∴∠FEG+∠DGF=x+y=180°-35°=145°,

即x+y=145°,

在△FDC中,∠CDF=180°-∠DCE-∠DFC=180°-x-(y-35°)

=215°-(x+y)

=70°,

故答案为:70°.【点睛】本题考查了三角形内角和定理,解题的关键是学会利用参数解决问题,属于中考常考题型.三、解答题(共78分)19、5<c<1【分析】由a2+b2=10a+8b-41,得a,b的值,然后利用三角形的三边关系求得c的取值范围即可.【详解】解:∵满足a2+b2=10a+8b-41,

∴a2-10a+25+b2-8b+16=0,

∴(a-5)2+(b-4)2=0,

∵(a-5)2≥0,(b-4)2≥0,

∴a-5=0,b-4=0,

∴a=5,b=4;

∴5-4<c<5+4,

∵c是最长边,

∴5<c<1.【点睛】考查了配方法的应用、非负数的性质及三角形的三边关系,解题的关键是对方程的左边进行配方,难度不大.20、证明过程见解析【分析】要证明BE=CD,只要证明AB=AC即可,由条件可以求得△AEC和△ADB全等,从而可以证得结论.【详解】∵BD⊥AC于点D,CE⊥AB于点E,∴∠ADB=∠AEC=90°,在△ADB和△AEC中,∴△ADB≌△AEC(ASA)∴AB=AC,又∵AD=AE,∴BE=CD.考点:全等三角形的判定与性质.21、(1)二月份每辆车售价是900元;(2)每辆山地自行车的进价是600元.【解析】(1)设二月份每辆车售价为x元,则一月份每辆车售价为(x+100)元,根据数量=总价÷单价,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设每辆山地自行车的进价为y元,根据利润=售价﹣进价,即可得出关于y的一元一次方程,解之即可得出结论.【详解】(1)设二月份每辆车售价为x元,则一月份每辆车售价为(x+100)元,根据题意得:,解得:x=900,经检验,x=900是原分式方程的解,答:二月份每辆车售价是900元;(2)设每辆山地自行车的进价为y元,根据题意得:900×(1﹣10%)﹣y=35%y,解得:y=600,答:每辆山地自行车的进价是600元.【点睛】本题考查了分式方程的应用、一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.22、(1),,;(2);(3)成立;(4)0【分析】(1)根据表中的规律即可得出;(2)由前几组数可得出,,之间的关系;(3)另n=2k代入,,计算即可得出;(4)根据(2)中的关系式,将进行合理的拆分,使之符合(2)中的规律即可计算得出.【详解】解:(1)由表中信息可得,,,故答案为,,.(2)由于,,∵即.(3)令n=2k,则,,∵,由于即,∴对于偶数,这个关系成立(4)∵由(2)中结论可知∴【点睛】本题考查了勾股定理中的规律探究问题,解题的关键是通过表格找出规律,并应用规律.23、(1)1﹣;(2)C坐标为(﹣1,0)【分析】(1)根据实数的混合运算法则计算;(2)根据勾股定理求出AB,根据坐标与图形性质解答.【详解】解:(1)﹣(﹣1)2017+﹣==1﹣;(2)由勾股定理得,AB===5,则OC=AC﹣OA=1,则点C坐标为(﹣1,0).【点睛】本题考查的是实数的混合运算、勾股定理,掌握实数的混合运算法则、勾股定理是解题的关键.24、(1)-54;(2)-4y+1【分析】(1)根据有理数幂的乘方、0指数幂、同底数幂乘法的运算法则计算即可;(2)先利用平方差公式及多项式乘以多项式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论